Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
2.
Matrix Biol ; 120: 24-42, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187448

RESUMO

Myogenesis is the process that generates multinucleated contractile myofibers from muscle stem cells during skeletal muscle development and regeneration. Myogenesis is governed by myogenic regulatory transcription factors, including MYOD1. Here, we identified the secreted matricellular protein ADAMTS-like 2 (ADAMTSL2) as part of a Wnt-dependent positive feedback loop, which augmented or sustained MYOD1 expression and thus promoted myoblast differentiation. ADAMTSL2 depletion resulted in severe retardation of myoblast differentiation in vitro and its ablation in myogenic precursor cells resulted in aberrant skeletal muscle architecture. Mechanistically, ADAMTSL2 potentiated WNT signaling by binding to WNT ligands and WNT receptors. We identified the WNT-binding ADAMTSL2 peptide, which was sufficient to promote myogenesis in vitro. Since ADAMTSL2 was previously described as a negative regulator of TGFß signaling in fibroblasts, ADAMTSL2 now emerges as a signaling hub that could integrate WNT, TGFß and potentially other signaling pathways within the dynamic microenvironment of differentiating myoblasts during skeletal muscle development and regeneration.


Assuntos
Células Satélites de Músculo Esquelético , Via de Sinalização Wnt , Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Humanos , Camundongos , Animais
3.
Nat Struct Mol Biol ; 30(5): 608-618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081316

RESUMO

Genetic mutations in fibrillin microfibrils cause serious inherited diseases, such as Marfan syndrome and Weill-Marchesani syndrome (WMS). These diseases typically show major dysregulation of tissue development and growth, particularly in skeletal long bones, but links between the mutations and the diseases are unknown. Here we describe a detailed structural analysis of native fibrillin microfibrils from mammalian tissue by cryogenic electron microscopy. The major bead region showed pseudo eightfold symmetry where the amino and carboxy termini reside. On the basis of this structure, we show that a WMS deletion mutation leads to the induction of a structural rearrangement that blocks interaction with latent TGFß-binding protein-1 at a remote site. Separate deletion of this binding site resulted in the assembly of shorter fibrillin microfibrils with structural alterations. The integrin αvß3-binding site was also mapped onto the microfibril structure. These results establish that in complex extracellular assemblies, such as fibrillin microfibrils, mutations may have long-range structural consequences leading to the disruption of growth factor signaling and the development of disease.


Assuntos
Matriz Extracelular , Microfibrilas , Animais , Microfibrilas/metabolismo , Microfibrilas/patologia , Fibrilinas/genética , Fibrilinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Mutação , Sítios de Ligação , Mamíferos/metabolismo
4.
Matrix Biol ; 114: 18-34, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368447

RESUMO

The ADAMTS superfamily is composed of secreted metalloproteases and structurally related non-catalytic ADAMTS-like proteins. A subset of this superfamily, including ADAMTS6, ADAMTS10 and ADAMTSL2, are involved in elastic fiber assembly and bind to fibrillin and other matrix molecules that regulate the extracellular bioavailability of the potent growth factor TGFß. Fibrillinopathies, that can also result from mutation of these ADAMTS/L proteins, have been linked to disrupted TGFß homeostasis. ADAMTS6 and ADAMTS10 are homologous metalloproteases with poorly characterized substrates where ADAMTS10 is thought to process fibrillin-2 and ADAMTS6 latent TGFß-binding protein (LTBP)-1. In order to understand the contribution of ADAMTS6, and these other members of the ADAMTS/L family, to TGFß homeostasis, we have analyzed the effects of ADAMTS6, ADAMTS10 and ADAMTSL2 expression on TGFß activation. We found that their expression increases TGFß activation in a dose dependent manner, following stimulation with mature TGFß1. For ADAMTS6, the catalytically active protease is required for effective TGFß activation, where ADAMTS6 cleaves LTBP3 as well as LTBP1, and binds to the large latent TGFß complexes of LTBP1 and LTBP3. Furthermore, ADAMTS6 expression increases the mechanotension of cells which results in inactivation of the Hippo Pathway, resulting in an increased translocation of YAP/TAZ complex to the nucleus. Together these findings suggest that when the balance of TGFß is perturbed ADAMTS6 can influence TGFß activation via two mechanisms. It directly cleaves the latent TGFß complexes and also acts indirectly, along with ADAMTS10 and ADAMTSL2, by altering the mechanotension of cells. Together this increases activation of TGFß from large latent complexes which may contribute to disease pathogenesis.


Assuntos
Proteínas dos Microfilamentos , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibrilinas , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Proteínas ADAMTS/genética , Fibrilina-1
5.
Proc Natl Acad Sci U S A ; 119(29): e2202209119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858348

RESUMO

Membranous nephropathy is an autoimmune kidney disease caused by autoantibodies targeting antigens present on glomerular podocytes, instigating a cascade leading to glomerular injury. The most prevalent circulating autoantibodies in membranous nephropathy are against phospholipase A2 receptor (PLA2R), a cell surface receptor. The dominant epitope in PLA2R is located within the cysteine-rich domain, yet high-resolution structure-based mapping is lacking. In this study, we define the key nonredundant amino acids in the dominant epitope of PLA2R involved in autoantibody binding. We further describe two essential regions within the dominant epitope and spacer requirements for a synthetic peptide of the epitope for drug discovery. In addition, using cryo-electron microscopy, we have determined the high-resolution structure of PLA2R to 3.4 Å resolution, which shows that the dominant epitope and key residues within the cysteine-rich domain are accessible at the cell surface. In addition, the structure of PLA2R not only suggests a different orientation of domains but also implicates a unique immunogenic signature in PLA2R responsible for inducing autoantibody formation and recognition.


Assuntos
Apresentação de Antígeno , Autoanticorpos , Glomerulonefrite Membranosa , Epitopos Imunodominantes , Receptores da Fosfolipase A2 , Autoanticorpos/química , Sítios de Ligação , Microscopia Crioeletrônica , Cisteína/química , Glomerulonefrite Membranosa/imunologia , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Domínios Proteicos , Receptores da Fosfolipase A2/química , Receptores da Fosfolipase A2/imunologia
6.
Biol Open ; 11(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35603711

RESUMO

A BMP gradient is essential for patterning the dorsal-ventral axis of invertebrate and vertebrate embryos. The extracellular BMP binding protein Short Gastrulation (Sog) in Drosophila plays a key role in BMP gradient formation. In this study, we combine genome editing, structural and developmental approaches to study Sog function in Drosophila. We generate a sog knockout fly stock, which allows simple reintegration of altered versions of the sog coding sequence. As proof-of-principle, we test the requirement for two cysteine residues that were previously identified as targets for palmitoylation, which has been proposed to enhance Sog secretion. However, we show that the sogC27,28S mutant is viable with only very mild phenotypes, indicating that these residues and their potential modification are not critical for Sog secretion in vivo. Additionally, we use experimental negative stain EM imaging and hydrodynamic data to validate the AlphaFold structure prediction for Sog. The model suggests a more compact shape than the vertebrate ortholog Chordin and conformational flexibility between the C-terminal von Willebrand C domains. We discuss how this altered compactness may contribute to mechanistic differences in Sog and Chordin function during BMP gradient formation. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Gastrulação , Humanos , Transdução de Sinais
7.
Elife ; 112022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503090

RESUMO

The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.


Assuntos
Proteínas ADAMTS , Microfibrilas , Proteínas ADAMTS/química , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animais , Fibrilina-1/genética , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Camundongos , Microfibrilas/metabolismo , Proteólise
8.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456902

RESUMO

As essential components of our connective tissues, elastic fibres give tissues such as major blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1, tropoelastin, latent TGFß binding protein-4, and fibulin-4 and -5. We summarise their roles in elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for a better understanding of their potential application in tissue regeneration.


Assuntos
Tecido Elástico , Proteínas da Matriz Extracelular , Tecido Conjuntivo/metabolismo , Tecido Elástico/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Tropoelastina/genética , Tropoelastina/metabolismo , Cicatrização/genética
9.
Matrix Biol ; 107: 24-39, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122964

RESUMO

TGFß superfamily members are potent growth factors in the extracellular matrix with essential roles in all aspects of cellular behaviour. Latent TGFß binding proteins (LTBPs) are co-expressed with TGFß, essential for correct folding and secretion of the growth factor, to form large latent complexes. These large latent complexes bind extracellular proteins such as fibrillin for sequestration of TGFß in the matrix, essential for normal tissue function, and dysregulated TGFß signalling is a hallmark of many fibrillinopathies. Transglutaminase-2 (TG2) cross-linking of LTBPs is known to play a role in TGFß activation but the underlying molecular mechanisms are not resolved. Here we show that fibrillin is a matrix substrate for TG2 and that TG2 cross-linked complexes can be formed between fibrillin and LTBP-1 and -3, and their latent TGFß complexes. The structure of the fibrillin-LTBP1 complex shows that the two elongated proteins interact in a perpendicular arrangement which would allow them to form distal interactions between the matrix and the cell surface. Formation of the cross-link with fibrillin does not change the interaction between latent TGFß and integrin αVß6 but does increase TGFß activation in cell-based assays. The activating effect may be due to direction of the latent complexes to the cell surface by fibrillin, as competition with heparan sulphate can ameliorate the activating effect. Together, these data support that TGFß activation can be enhanced by covalent tethering of LTBPs to the matrix via fibrillin.


Assuntos
Proteínas dos Microfilamentos , Transglutaminases , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo
10.
Front Genet ; 12: 706662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539739

RESUMO

Latent TGFß binding protein-4 (LTBP4) is a multi-domain glycoprotein, essential for regulating the extracellular bioavailability of TGFß and assembly of elastic fibre proteins, fibrillin-1 and tropoelastin. LTBP4 mutations are linked to autosomal recessive cutis laxa type 1C (ARCL1C), a rare congenital disease characterised by high mortality and severely disrupted connective tissues. Despite the importance of LTBP4, the structure and molecular consequences of disease mutations are unknown. Therefore, we analysed the structural and functional consequences of three ARCL1C causing point mutations which effect highly conserved cysteine residues. Our structural and biophysical data show that the LTBP4 N- and C-terminal regions are monomeric in solution and adopt extended conformations with the mutations resulting in subtle changes to their conformation. Similar to LTBP1, the N-terminal region is relatively inflexible, whereas the C-terminal region is flexible. Interaction studies show that one C-terminal mutation slightly decreases binding to fibrillin-1. We also found that the LTBP4 C-terminal region directly interacts with tropoelastin which is perturbed by both C-terminal ARCL1C mutations, whereas an N-terminal mutation increased binding to fibulin-4 but did not affect the interaction with heparan sulphate. Our results suggest that LTBP4 mutations contribute to ARCL1C by disrupting the structure and interactions of LTBP4 which are essential for elastogenesis in a range of mammalian connective tissues.

11.
Matrix Biol Plus ; 11: 100071, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34435185

RESUMO

Bone morphogenic proteins (BMPs) are important growth regulators in embryogenesis and postnatal homeostasis. Their tight regulation is crucial for successful embryonic development as well as tissue homeostasis in the adult organism. BMP inhibition by natural extracellular biologic antagonists represents the most intensively studied mechanistic concept of BMP growth factor regulation. It was shown to be critical for numerous developmental programs, including germ layer specification and spatiotemporal gradients required for the establishment of the dorsal-ventral axis and organ formation. The importance of BMP antagonists for extracellular matrix homeostasis is illustrated by the numerous human connective tissue disorders caused by their mutational inactivation. Here, we will focus on the known functional interactions targeting BMP antagonists to the ECM and discuss how these interactions influence BMP antagonist activity. Moreover, we will provide an overview about the current concepts and investigated molecular mechanisms modulating BMP inhibitor function in the context of development and disease.

12.
Matrix Biol Plus ; 12: 100078, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34355160

RESUMO

Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFß binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.

13.
Front Bioeng Biotechnol ; 9: 643110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718344

RESUMO

Elastic fibers are an important component of the extracellular matrix, providing stretch, resilience, and cell interactivity to a broad range of elastic tissues. Elastin makes up the majority of elastic fibers and is formed by the hierarchical assembly of its monomer, tropoelastin. Our understanding of key aspects of the assembly process have been unclear due to the intrinsic properties of elastin and tropoelastin that render them difficult to study. This review focuses on recent developments that have shaped our current knowledge of elastin assembly through understanding the relationship between tropoelastin's structure and function.

14.
FASEB J ; 35(3): e21353, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33629769

RESUMO

Since their discovery as pluripotent cytokines extractable from bone matrix, it has been speculated how bone morphogenetic proteins (BMPs) become released and activated from the extracellular matrix (ECM). In contrast to TGF-ßs, most investigated BMPs are secreted as bioactive prodomain (PD)-growth factor (GF) complexes (CPLXs). Recently, we demonstrated that PD-dependent targeting of BMP-7 CPLXs to the extracellular fibrillin microfibril (FMF) components fibrillin-1 and -2 represents a BMP sequestration mechanism by rendering the GF latent. Understanding how BMPs become activated from ECM scaffolds such as FMF is crucial to elucidate pathomechanisms characterized by aberrant BMP activation and ECM destruction. Here, we describe a new MMP-dependent BMP-7 activation mechanism from ECM-targeted pools via specific PD degradation. Using Edman sequencing and mutagenesis, we identified a new and conserved MMP-13 cleavage site within the BMP-7 PD. A degradation screen with different BMP family PDs and representative MMP family members suggested utilization of the identified site in a general MMP-driven BMP activation mechanism. Furthermore, sandwich ELISA and solid phase cleavage studies in combination with bioactivity assays, single particle TEM, and in silico molecular docking experiments provided evidence that PD cleavage by MMP-13 leads to BMP-7 CPLX disintegration and bioactive GF release.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/fisiologia , Motivos de Aminoácidos , Animais , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/metabolismo , Proteínas Morfogenéticas Ósseas/química , Células HEK293 , Humanos , Metaloproteinase 13 da Matriz/fisiologia , Camundongos , Simulação de Acoplamento Molecular , Domínios Proteicos
15.
FEBS J ; 288(1): 175-189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866986

RESUMO

Protochlorophyllide oxidoreductase (POR) catalyses reduction of protochlorophyllide (Pchlide) to chlorophyllide, a light-dependent reaction of chlorophyll biosynthesis. POR is also important in plant development as it is the main constituent of prolamellar bodies in etioplast membranes. Prolamellar bodies are highly organised, paracrystalline structures comprising aggregated oligomeric structures of POR-Pchlide-NADPH complexes. How these oligomeric structures are formed and the role of Pchlide in oligomerisation remains unclear. POR crystal structures highlight two peptide regions that form a 'lid' to the active site, and undergo conformational change on binding Pchlide. Here, we show that Pchlide binding triggers formation of large oligomers of POR using size exclusion chromatography. A POR 'octamer' has been isolated and its structure investigated by cryo-electron microscopy at 7.7 Å resolution. This structure shows that oligomer formation is most likely driven by the interaction of amino acid residues in the highly conserved lid regions. Computational modelling indicates that Pchlide binding stabilises exposure of hydrophobic surfaces formed by the lid regions, which supports POR dimerisation and ultimately oligomer formation. Studies with variant PORs demonstrate that lid residues are involved in substrate binding and photocatalysis. These highly conserved lid regions therefore have a dual function. The lid residues position Pchlide optimally to enable photocatalysis. Following Pchlide binding, they also enable POR oligomerisation - a process that is reversed through subsequent photocatalysis in the early stages of chloroplast development.


Assuntos
Clorofila/química , Clorofilídeos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Fotossíntese/genética , Protoclorifilida/química , Sequência de Aminoácidos , Domínio Catalítico , Clorofila/biossíntese , Clorofilídeos/biossíntese , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NADP/química , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Plantas/enzimologia , Plantas/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Protoclorifilida/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermosynechococcus/enzimologia , Thermosynechococcus/genética
16.
J Med Genet ; 58(11): 778-782, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900841

RESUMO

BACKGROUND: Although carpal tunnel syndrome (CTS) is the most common form of peripheral entrapment neuropathy, its pathogenesis remains largely unknown. An estimated heritability index of 0.46 and an increased familial occurrence indicate that genetic factors must play a role in the pathogenesis. METHODS AND RESULTS: We report on a family in which CTS occurred in subsequent generations at an unusually young age. Additional clinical features included brachydactyly and short Achilles tendons resulting in toe walking in childhood. Using exome sequencing, we identified a heterozygous variant (c.5009T>G; p.Phe1670Cys) in the fibrillin-2 (FBN2) gene that co-segregated with the phenotype in the family. Functional assays showed that the missense variant impaired integrin-mediated cell adhesion and migration. Moreover, we observed an increased transforming growth factor-ß signalling and fibrosis in the carpal tissues of affected individuals. A variant burden test in a large cohort of patients with CTS revealed a significantly increased frequency of rare (6.7% vs 2.5%-3.4%, p<0.001) and high-impact (6.9% vs 2.7%, p<0.001) FBN2 variants in patient alleles compared with controls. CONCLUSION: The identification of a novel FBN2 variant (p.Phe1670Cys) in a unique family with early onset CTS, together with the observed increased frequency of rare and high-impact FBN2 variants in patients with sporadic CTS, strongly suggest a role of FBN2 in the pathogenesis of CTS.


Assuntos
Síndrome do Túnel Carpal/genética , Fibrilina-2/genética , Tendão do Calcâneo/anormalidades , Estatura/genética , Síndrome do Túnel Carpal/diagnóstico por imagem , Síndrome do Túnel Carpal/etiologia , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem
17.
J Mol Biol ; 432(21): 5736-5751, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32898582

RESUMO

Elastic fibres are essential components of all mammalian elastic tissues such as blood vessels, lung and skin, and are critically important for the mechanical properties they endow. The main components of elastic fibres are elastin and fibrillin, where correct formation of elastic fibres requires a fibrillin microfibril scaffold for the deposition of elastin. It has been demonstrated previously that the interaction between fibrillin and tropoelastin, the elastin precursor, increases the rate of assembly of tropoelastin. Furthermore, tropoelastin and fibrillin can be cross-linked by transglutaminase-2, but the function of cross-linking on their elastic properties is yet to be elucidated. Here we show that transglutaminase cross-linking supports formation of a 1:1 stoichiometric fibrillin-tropoelastin complex. SAXS data show that the complex retains features of the individual proteins but is elongated supporting end-to-end assembly. Elastic network models were constructed to compare the dynamics of tropoelastin and fibrillin individually as well as in the cross-linked complex. Normal mode analysis was performed to determine the structures' most energetically favourable, biologically accessible motions which show that within the complex, tropoelastin is less mobile and this molecular stabilisation extends along the length of the tropoelastin molecule to regions remote from the cross-linking site. Together, these data suggest a long-range stabilising effect of cross-linking that occurs due to the covalent linkage of fibrillin to tropoelastin. This work provides insight into the interactions of tropoelastin and fibrillin and how cross-link formation stabilises the elastin precursor so it is primed for elastic fibre assembly.


Assuntos
Elastina/metabolismo , Fibrilina-1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Tropoelastina/metabolismo , Elastina/química , Proteínas de Ligação ao GTP/química , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/química , Tropoelastina/química
18.
Biophys J ; 119(3): 667-689, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32652058

RESUMO

PSD-95 is a member of the membrane-associated guanylate kinase class of proteins that forms scaffolding interactions with partner proteins, including ion and receptor channels. PSD-95 is directly implicated in modulating the electrical responses of excitable cells. The first two PSD-95/disks large/zona occludens (PDZ) domains of PSD-95 have been shown to be the key component in the formation of channel clusters. We report crystal structures of this dual domain in both apo- and ligand-bound form: thermodynamic analysis of the ligand association and small-angle x-ray scattering of the dual domain in the absence and presence of ligands. These experiments reveal that the ligated double domain forms a three-dimensional scaffold that can be described by a space group. The concentration of the components in this study is comparable with those found in compartments of excitable cells such as the postsynaptic density and juxtaparanodes of Ranvier. These in vitro experiments inform the basis of the scaffolding function of PSD-95 and provide a detailed model for scaffold formation by the PDZ domains of PSD-95.


Assuntos
Proteínas do Tecido Nervoso , Domínios PDZ , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Ligantes , Proteínas do Tecido Nervoso/metabolismo , Peptídeos , Ligação Proteica
19.
J Biol Chem ; 295(16): 5278-5291, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32144206

RESUMO

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin ß-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor ß, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.


Assuntos
alfa-Globulinas/química , Matriz Extracelular/metabolismo , Imunidade Inata , Simulação de Dinâmica Molecular , Ovulação , Humanos , Cadeias beta de Integrinas/química , Domínios Proteicos , Fator de von Willebrand/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...