Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Contemp Clin Trials Commun ; 38: 101257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298917

RESUMO

Background: Registry-based trials have the potential to reduce randomized clinical trial (RCT) costs. However, observed cost differences also may be achieved through pragmatic trial designs. A systematic comparison of trial costs across different designs has not been previously performed. Methods: We conducted a study to compare the current Steroids to Reduce Systemic inflammation after infant heart surgery (STRESS) registry-based RCT vs. two established designs: pragmatic RCT and explanatory RCT. The primary outcome was total RCT design costs. Secondary outcomes included: RCT duration and personnel hours. Costs were estimated using the Duke Clinical Research Institute's pricing model. Results: The Registry-Based RCT estimated duration was 31.9 weeks greater than the other designs (259.5 vs. 227.6 weeks). This delay was caused by the Registry-Based design's periodic data harvesting that delayed site closing and statistical reporting. Total personnel hours were greatest for the Explanatory design followed by the Pragmatic design and the Registry-Based design (52,488 vs 29,763 vs. 24,480 h, respectively). Total costs were greatest for the Explanatory design followed by the Pragmatic design and the Registry-Based design ($10,140,263 vs. $4,164,863 vs. $3,268,504, respectively). Thus, Registry-Based total costs were 32 % of the Explanatory and 78 % of the Pragmatic design. Conclusion: Total costs for the STRESS RCT with a registry-based design were less than those for a pragmatic design and much less than an explanatory design. Cost savings reflect design elements and leveraging of registry resources to improve cost efficiency, but delays to trial completion should be considered.

2.
N Engl J Med ; 387(23): 2138-2149, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36342116

RESUMO

BACKGROUND: Although perioperative prophylactic glucocorticoids have been used for decades, whether they improve outcomes in infants after heart surgery with cardiopulmonary bypass is unknown. METHODS: We conducted a multicenter, prospective, randomized, placebo-controlled, registry-based trial involving infants (<1 year of age) undergoing heart surgery with cardiopulmonary bypass at 24 sites participating in the Society of Thoracic Surgeons Congenital Heart Surgery Database. Registry data were used in the evaluation of outcomes. The infants were randomly assigned to receive prophylactic methylprednisolone (30 mg per kilogram of body weight) or placebo, which was administered into the cardiopulmonary-bypass pump-priming fluid. The primary end point was a ranked composite of death, heart transplantation, or any of 13 major complications. Patients without any of these events were assigned a ranked outcome based on postoperative length of stay. In the primary analysis, the ranked outcomes were compared between the trial groups with the use of odds ratios adjusted for prespecified risk factors. Secondary analyses included an unadjusted odds ratio, a win ratio, and safety outcomes. RESULTS: A total of 1263 infants underwent randomization, of whom 1200 received either methylprednisolone (599 infants) or placebo (601 infants). The likelihood of a worse outcome did not differ significantly between the methylprednisolone group and the placebo group (adjusted odds ratio, 0.86; 95% confidence interval [CI], 0.71 to 1.05; P = 0.14). Secondary analyses (unadjusted for risk factors) showed an odds ratio for a worse outcome of 0.82 (95% CI, 0.67 to 1.00) and a win ratio of 1.15 (95% CI, 1.00 to 1.32) in the methylprednisolone group as compared with the placebo group, findings suggestive of a benefit with methylprednisolone; however, patients in the methylprednisolone group were more likely than those in the placebo group to receive postoperative insulin for hyperglycemia (19.0% vs. 6.7%, P<0.001). CONCLUSIONS: Among infants undergoing surgery with cardiopulmonary bypass, prophylactic use of methylprednisolone did not significantly reduce the likelihood of a worse outcome in an adjusted analysis and was associated with postoperative development of hyperglycemia warranting insulin in a higher percentage of infants than placebo. (Funded by the National Center for Advancing Translational Sciences and others; STRESS ClinicalTrials.gov number, NCT03229538.).


Assuntos
Procedimentos Cirúrgicos Cardíacos , Metilprednisolona , Humanos , Metilprednisolona/efeitos adversos , Estudos Prospectivos , Insulina
3.
Front Cardiovasc Med ; 9: 857581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600483

RESUMO

Throughout the continuum of heart formation, myocardial growth and differentiation occurs in concert with the development of a specialized population of endothelial cells lining the cardiac lumen, the endocardium. Once the endocardial cells are specified, they are in close juxtaposition to the cardiomyocytes, which facilitates communication between the two cell types that has been proven to be critical for both early cardiac development and later myocardial function. Endocardial cues orchestrate cardiomyocyte proliferation, survival, and organization. Additionally, the endocardium enables oxygenated blood to reach the cardiomyocytes. Cardiomyocytes, in turn, secrete factors that promote endocardial growth and function. As misregulation of this delicate and complex endocardial-myocardial interplay can result in congenital heart defects, further delineation of underlying genetic and molecular factors involved in cardiac paracrine signaling will be vital in the development of therapies to promote cardiac homeostasis and regeneration. Herein, we highlight the latest research that has advanced the elucidation of endocardial-myocardial interactions in early cardiac morphogenesis, including endocardial and myocardial crosstalk necessary for cellular differentiation and tissue remodeling during trabeculation, as well as signaling critical for endocardial growth during trabeculation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34250501

RESUMO

Background: Pregestational diabetes complicates one million pregnancies in the United States and is associated with placental dysfunction. Placental dysfunction can manifest as stillbirth, spontaneous abortions, fetal growth restriction, and preeclampsia in the mother. However, the underlying mechanisms of placental dysfunction are not well understood. Objective: We hypothesize that maternal hyperglycemia disrupts cellular processes important for normal vascular development and function. Study Design: Hyperglycemia, defined as a non-fasting glucose concentration of >250 mg/dL was induced in eight-week-old female CD1 mice by injecting a one-time intraperitoneal dose of 150mg/kg streptozotocin. Control mice received an equal volume of normal saline. Hyperglycemic and control females were mated with CD-1 males. At Embryonic Day 17.5, the pregnant mice were euthanized. Sixty-eight placentas were harvested from the six euglycemic dams and twenty-six placentas were harvested from three hyperglycemic dams. RNA was extracted from homogenized placental tissue (N=12/group; 2-4 placentas per litter of each group). Total RNA was prepared and sequenced. Differentially expressed genes that were >2-fold change was considered significant. Placentas (9-20/group) were fixed in paraffin wax and sectioned at 6 µm. Cross-sectional areas of placental zones were evaluated using slides stained for hematoxylin and eosin, glycogen, collagen, proliferation and apoptosis. Quantification of staining intensity and percent positive nuclei was done using Leica Image Hub Data software. Data were compared between the control and experimental group using t-tests. Values of p < 0.05 were considered to be statistically significant. Results: The average maternal blood glucose concentrations for control and diabetic dams were 112+/-24 and 473+/-47 respectively (p<0.0001). A higher rate of resorptions was noted in the hyperglycemia exposed placentas compared to euglycemic exposed placentas (24% vs 7%; p=0.04). A total of 24 RNA libraries (12/group) were prepared. Placentas from hyperglycemic pregnancies exhibited 1374 differentially expressed genes (DEGs). The 10 most significantly differentially expressed genes are Filip 1, Prom 2, Fam 78a, Pde4d, Pou3f1, Kcnk5, Dusp4, Cxcr4, Slc6a4 and D430019H16Rik. Their corresponding biologic functions are related to chemotaxis, ossification, cellular and vascular development. Histologically, we found that hyperglycemia exposed placentas demonstrated increased proliferation, apoptosis, and glycogen content and decreased collagen deposition. Conclusion: There was a higher rate of resorptions in the pregnancies of hyperglycemic dams. Pregestational diabetes resulted in significant changes in placental morphology, including increased glycogen content in the spongiotrophoblast, decreased collagen deposition, increased apoptosis and proliferation in the junction zone. Maternal diabetes causes widespread disruption in multiple cellular processes important for normal vascular development and sets the platform for placenta dysfunction.

5.
Front Cell Dev Biol ; 9: 676543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239874

RESUMO

Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human.

6.
Am Heart J ; 226: 188-197, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599259

RESUMO

BACKGROUND: Randomized controlled trials (RCTs) in children with heart disease are challenging and therefore infrequently performed. We sought to improve feasibility of perioperative RCTs for this patient cohort using data from a large, multicenter clinical registry. We evaluated potential enrollment and end point frequencies for various inclusion cohorts and developed a novel global rank trial end point. We then performed trial simulations to evaluate power gains with the global rank end point and with use of planned covariate adjustment as an analytic strategy. METHODS: Data from the Society of Thoracic Surgery-Congenital Heart Surgery Database (STS-CHSD, 2011-2016) were used to support development of a consensus-based global rank end point and for trial simulations. For Monte Carlo trial simulations (n = 50,000/outcome), we varied the odds of outcomes for treatment versus placebo and evaluated power based on the proportion of trial data sets with a significant outcome (P < .05). RESULTS: The STS-CHSD study cohort included 35,967 infant index cardiopulmonary bypass operations from 103 STS-CHSD centers, including 11,411 (32%) neonatal cases and 12,243 (34%) high-complexity (Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery mortality category ≥4) cases. In trial simulations, study power was 21% for a mortality-only end point, 47% for a morbidity and mortality composite, and 78% for the global rank end point. With covariate adjustment, power increased to 94%. Planned covariate adjustment was preferable to restricting to higher-risk cohorts despite higher event rates in these cohorts. CONCLUSIONS: Trial simulations can inform trial design. Our findings, including the newly developed global rank end point, may be informative for future perioperative trials in children with heart disease.


Assuntos
Ponte Cardiopulmonar , Cardiopatias/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Projetos de Pesquisa/estatística & dados numéricos , Criança , Cardiopatias/congênito , Humanos
7.
Am Heart J ; 220: 192-202, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31855716

RESUMO

For decades, physicians have administered corticosteroids in the perioperative period to infants undergoing heart surgery with cardiopulmonary bypass (CPB) to reduce the postoperative systemic inflammatory response to CPB. Some question this practice because steroid efficacy has not been conclusively demonstrated and because some studies indicate that steroids could have harmful effects. STRESS is a randomized, placebo-controlled, double-blind, multicenter trial designed to evaluate safety and efficacy of perioperative steroids in infants (age < 1 year) undergoing heart surgery with CPB. Participants (planned enrollment = 1,200) are randomized 1:1 to methylprednisolone (30 mg/kg) administered into the CPB pump prime versus placebo. The trial is nested within the existing infrastructure of the Society of Thoracic Surgeons Congenital Heart Surgery Database. The primary outcome is a global rank score of mortality, major morbidities, and hospital length of stay with components ranked commensurate with their clinical severity. Secondary outcomes include several measures of major postoperative morbidity, postoperative hospital length of stay, and steroid-related safety outcomes including prevalence of hyperglycemia and postoperative infectious complications. STRESS will be one of the largest trials ever conducted in children with heart disease and will answer a decades-old question related to safety and efficacy of perioperative steroids in infants undergoing heart surgery with CPB. The pragmatic "trial within a registry" design may provide a mechanism for conducting low-cost, high-efficiency trials in a heretofore-understudied patient population.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ponte Cardiopulmonar/efeitos adversos , Cardiopatias Congênitas/cirurgia , Metilprednisolona/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Método Duplo-Cego , Humanos , Hiperglicemia/epidemiologia , Lactente , Recém-Nascido , Infecções/epidemiologia , Tempo de Internação , Metilprednisolona/administração & dosagem , Metilprednisolona/efeitos adversos , Avaliação de Resultados em Cuidados de Saúde , Placebos/uso terapêutico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/mortalidade , Sistema de Registros , Projetos de Pesquisa , Síndrome de Resposta Inflamatória Sistêmica/mortalidade , Estados Unidos
8.
Dev Biol ; 455(1): 73-84, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319059

RESUMO

The mechanisms regulating endothelial cell response to hemodynamic forces required for heart valve development, especially valve remodeling, remain elusive. Tie1, an endothelial specific receptor tyrosine kinase, is up-regulated by oscillating shear stress and is required for lymphatic valve development. In this study, we demonstrate that valvular endothelial Tie1 is differentially expressed in a dynamic pattern predicted by disturbed flow during valve remodeling. Following valvular endocardial specific deletion of Tie1 in mice, we observed enlarged aortic valve leaflets, decreased valve stiffness and valvular insufficiency. Valve abnormalities were only detected in late gestation and early postnatal mutant animals and worsened with age. The mutant mice developed perturbed extracellular matrix (ECM) deposition and remodeling characterized by increased glycosaminoglycan and decreased collagen content, as well as increased valve interstitial cell expression of Sox9, a transcription factor essential for normal ECM maturation during heart valve development. This study provides the first evidence that Tie1 is involved in modulation of late valve remodeling and suggests that an important Tie1-Sox9 signaling axis exists through which disturbed flows are converted by endocardial cells to paracrine Sox9 signals to modulate normal matrix remodeling of the aortic valve.


Assuntos
Valva Aórtica/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Receptor de TIE-1/genética , Animais , Valva Aórtica/embriologia , Valva Aórtica/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptor de TIE-1/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Remodelação Vascular/genética
9.
JCI Insight ; 52019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112136

RESUMO

The ang1-Tie2 pathway is required for normal vascular development, but its molecular effectors are not well-defined during cardiac ontogeny. Here we show that endocardial specific attenuation of Tie2 results in mid-gestation lethality due to heart defects associated with a hyperplastic but simplified trabecular meshwork (fewer but thicker trabeculae). Reduced proliferation and production of endocardial cells (ECs) following endocardial loss of Tie2 results in decreased endocardial sprouting required for trabecular assembly and extension. The hyperplastic trabeculae result from enhanced proliferation of trabecular cardiomyocyte (CMs), which is associated with upregulation of Bmp10, increased retinoic acid (RA) signaling, and Erk1/2 hyperphosphorylation in the myocardium. Intriguingly, myocardial phenotypes in Tie2-cko hearts could be partially rescued by inhibiting in utero RA signaling with pan-retinoic acid receptor antagonist BMS493. These findings reveal two complimentary functions of endocardial Tie2 during ventricular chamber formation: ensuring normal trabeculation by supporting EC proliferation and sprouting, and preventing hypertrabeculation via suppression of RA signaling in trabecular CMs.


Assuntos
Desenvolvimento Embrionário/fisiologia , Cardiopatias Congênitas/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Receptor TIE-2/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Endocárdio/embriologia , Endocárdio/crescimento & desenvolvimento , Endocárdio/metabolismo , Endocárdio/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Masculino , Camundongos , Receptor TIE-2/genética , Transdução de Sinais
10.
Development ; 146(9)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31023876

RESUMO

The endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells. To test this, we generated an in vitro, endocardial-specific ablation model using the diphtheria toxin receptor under the regulatory elements of the Nfatc1 genomic locus (NFATc1-DTR). Early treatment of NFATc1-DTR mouse embryoid bodies with diphtheria toxin efficiently ablated endocardial cells, which significantly attenuated the percentage of beating EBs in culture and expression of early and late myocardial differentiation markers. The addition of Bmp2 during endocardial ablation partially rescued myocyte differentiation, maturation and function. Therefore, we conclude that early stages of myocardial differentiation rely on endocardial paracrine signaling mediated in part by Bmp2. Our findings provide novel insight into early endocardial-myocardial interactions that can be explored to promote early myocardial development and growth.


Assuntos
Diferenciação Celular/fisiologia , Endocárdio/citologia , Endocárdio/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Animais , Diferenciação Celular/genética , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Organogênese/genética , Organogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
12.
J Clin Invest ; 128(2): 834-845, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355844

RESUMO

The endothelial tyrosine kinase receptor Tie1 remains poorly characterized, largely owing to its orphan receptor status. Global Tie1 inactivation causes late embryonic lethality, thereby reflecting its importance during development. Tie1 also plays pivotal roles during pathologies such as atherosclerosis and tumorigenesis. In order to study the contribution of Tie1 to tumor progression and metastasis, we conditionally deleted Tie1 in endothelial cells at different stages of tumor growth and metastatic dissemination. Tie1 deletion during primary tumor growth in mice led to a decrease in microvessel density and an increase in mural cell coverage with improved vessel perfusion. Reduced angiogenesis and enhanced vascular normalization resulted in a progressive increase of intratumoral necrosis that caused a growth delay only at later stages of tumor progression. Concomitantly, surgical removal of the primary tumor decreased the number of circulating tumor cells, reduced metastasis, and prolonged overall survival. Additionally, Tie1 deletion in experimental murine metastasis models prevented extravasation of tumor cells into the lungs and reduced metastatic foci. Taken together, the data support Tie1 as a therapeutic target by defining its regulatory functions during angiogenesis and vascular abnormalization and identifying its role during metastasis.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Neovascularização Patológica , Receptor de TIE-1/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma Experimental , Camundongos , Camundongos Knockout , Necrose , Transplante de Neoplasias
13.
Biochim Biophys Acta Proteins Proteom ; 1865(7): 927-935, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28341601

RESUMO

Significant progress has been made for tissue imaging of proteins using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS). These advancements now facilitate mapping of a wide range of proteins, peptides, and post-translational modifications in a wide variety of tissues; however, the use of MALDI IMS to detect proteins from cardiac tissue is limited. This review discusses the most recent advances in protein imaging and demonstrates application to cardiac tissue, including the heart valve. Protein imaging by MALDI IMS allows multiplexed histological mapping of proteins and protein components that are inaccessible by antibodies and should be considered an important tool for basic and clinical cardiovascular research. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.


Assuntos
Valvas Cardíacas/metabolismo , Proteínas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
JCI Insight ; 2(4): e90656, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239655

RESUMO

It remains unclear how perturbations in cardiomyocyte sarcomere function alter postnatal heart development. We utilized murine models that allowed manipulation of cardiac myosin-binding protein C (MYBPC3) expression at critical stages of cardiac ontogeny to study the response of the postnatal heart to disrupted sarcomere function. We discovered that the hyperplastic to hypertrophic transition phase of mammalian heart development was altered in mice lacking MYBPC3 and this was the critical period for subsequent development of cardiomyopathy. Specifically, MYBPC3-null hearts developed evidence of increased cardiomyocyte endoreplication, which was accompanied by enhanced expression of cell cycle stimulatory cyclins and increased phosphorylation of retinoblastoma protein. Interestingly, this response was self-limited at later developmental time points by an upregulation of the cyclin-dependent kinase inhibitor p21. These results provide valuable insights into how alterations in sarcomere protein function modify postnatal heart development and highlight the potential for targeting cell cycle regulatory pathways to counteract cardiomyopathic stimuli.


Assuntos
Proteínas de Transporte/genética , Crescimento Celular , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclinas/metabolismo , Hiperplasia , Hipertrofia , Camundongos , Miócitos Cardíacos/fisiologia , Fosforilação , Proteína do Retinoblastoma/metabolismo , Sarcômeros/fisiologia , Regulação para Cima
15.
PLoS One ; 11(8): e0159710, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505173

RESUMO

The epicardium plays an important role in coronary vessel formation and Tgfbr3-/- mice exhibit failed coronary vessel development associated with decreased epicardial cell invasion. Immortalized Tgfbr3-/- epicardial cells display the same defects. Tgfbr3+/+ and Tgfbr3-/- cells incubated for 72 hours with VEH or ligands known to promote invasion via TGFßR3 (TGFß1, TGFß2, BMP2), for 72 hours were harvested for RNA-seq analysis. We selected for genes >2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- cells when incubated with VEH (604), TGFß1 (515), TGFß2 (553), or BMP2 (632). Gene Ontology (GO) analysis of these genes identified dysregulated biological processes consistent with the defects observed in Tgfbr3-/- cells, including those associated with extracellular matrix interaction. GO and Gene Regulatory Network (GRN) analysis identified distinct expression profiles between TGFß1-TGFß2 and VEH-BMP2 incubated cells, consistent with the differential response of epicardial cells to these ligands in vitro. Despite the differences observed between Tgfbr3+/+ and Tgfbr3-/- cells after TGFß and BMP ligand addition, GRNs constructed from these gene lists identified NF-ĸB as a key nodal point for all ligands examined. Tgfbr3-/- cells exhibited decreased expression of genes known to be activated by NF-ĸB signaling. NF-ĸB activity was stimulated in Tgfbr3+/+ epicardial cells after TGFß2 or BMP2 incubation, while Tgfbr3-/- cells failed to activate NF-ĸB in response to these ligands. Tgfbr3+/+ epicardial cells incubated with an inhibitor of NF-ĸB signaling no longer invaded into a collagen gel in response to TGFß2 or BMP2. These data suggest that NF-ĸB signaling is dysregulated in Tgfbr3-/- epicardial cells and that NF-ĸB signaling is required for epicardial cell invasion in vitro. Our approach successfully identified a signaling pathway important in epicardial cell behavior downstream of TGFßR3. Overall, the genes and signaling pathways identified through our analysis yield the first comprehensive list of candidate genes whose expression is dependent on TGFßR3 signaling.


Assuntos
Pericárdio/citologia , Pericárdio/embriologia , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Transcriptoma , Animais , Linhagem Celular , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteoglicanas/deficiência , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Análise de Sequência de RNA
16.
Curr Opin Pediatr ; 28(5): 584-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428484

RESUMO

PURPOSE OF REVIEW: The study of cardiac development is critical to inform management strategies for congenital and acquired heart disease. This review serves to highlight some of the advances in this field over the past year. RECENT FINDINGS: Three main areas of study are included that have been particularly innovative and progressive. These include more precise gene targeting in animal models of disease and in moving from animal models to human disease, more precise in-vitro models including three-dimensional structuring and inclusion of hemodynamic components, and expanding the concepts of genetic regulation of heart development and disease. SUMMARY: Targeted genetics in animal models are able to make use of tissue and time-specific promotors that drive gene expression or knockout with high specificity. In-vitro models can recreate flow patterns in blood vessels and across cardiac valves. Noncoding RNAs, once thought to be of no consequence to gene transcription and translation, prove to be key regulators of genetic function in health and disease.


Assuntos
Cardiopatias Congênitas/embriologia , Coração/embriologia , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Hemodinâmica , Humanos , Técnicas In Vitro , Modelos Anatômicos , RNA não Traduzido
17.
Circ Cardiovasc Qual Outcomes ; 9(4): 432-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27220370

RESUMO

Infants with complex congenital heart disease are at high risk for poor neurodevelopmental outcomes. However, implementation of dedicated congenital heart disease follow-up programs presents important infrastructure, personnel, and resource challenges. We present the development, implementation, and retrospective review of 1- and 2-year outcomes of a Complex Congenital Heart Defect Neurodevelopmental Follow-Up program. This program was a synergistic approach between the Pediatric Cardiology, Cardiothoracic Surgery, Pediatric Intensive Care, and Neonatal Intensive Care Unit Follow-Up teams to provide a feasible and responsible utilization of existing infrastructure and personnel, to develop and implement a program dedicated to children with congenital heart disease. Trained developmental testers administered the Ages and Stages Questionnaire-3 over the phone to the parents of all referred children at least once between 6 and 12 months' corrected age. At 18 months' corrected age, all children were scheduled in the Neonatal Intensive-Care Unit Follow-Up Clinic for a visit with standardized neurological exams, Bayley III, multidisciplinary therapy evaluations and continued follow-up. Of the 132 patients identified in the Cardiothoracic Surgery database and at discharge from the hospital, a total number of 106 infants were reviewed. A genetic syndrome was identified in 23.4% of the population. Neuroimaging abnormalities were identified in 21.7% of the cohort with 12.8% having visibly severe insults. As a result, 23 (26.7%) received first-time referrals for early intervention services, 16 (13.8%) received referrals for new services in addition to their existing ones. We concluded that utilization of existing resources in collaboration with established programs can ensure targeted neurodevelopmental follow-up for all children with complex congenital heart disease.


Assuntos
Serviço Hospitalar de Cardiologia/organização & administração , Desenvolvimento Infantil , Prestação Integrada de Cuidados de Saúde/organização & administração , Cardiopatias Congênitas/terapia , Unidades de Terapia Intensiva Neonatal/organização & administração , Terapia Intensiva Neonatal/organização & administração , Sistema Nervoso/crescimento & desenvolvimento , Equipe de Assistência ao Paciente/organização & administração , Fatores Etários , Serviço Hospitalar de Cardiologia/estatística & dados numéricos , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/reabilitação , Intervenção Médica Precoce/organização & administração , Estudos de Viabilidade , Feminino , Serviços de Saúde/estatística & dados numéricos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/fisiopatologia , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Terapia Intensiva Neonatal/estatística & dados numéricos , Masculino , Modelos Organizacionais , Exame Neurológico , Ohio , Avaliação de Programas e Projetos de Saúde , Encaminhamento e Consulta/organização & administração , Estudos Retrospectivos , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento
18.
Biochem Biophys Res Commun ; 470(3): 613-619, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26801554

RESUMO

NDRG4 is a member of the NDRG family (N-myc downstream-regulated gene), which is highly expressed in brain and heart. Previous studies showed that Ndrg1-deficient mice exhibited a progressive demyelinating disorder of peripheral nerves and Ndrg4-deficient mice had spatial learning deficits and vulnerabilities to cerebral ischemia. Here, we report generation of Ndrg4 mutant alleles that exhibit several development defects different from those previously reported. Our homozygous mice showed growth retardation and postnatal lethality. Spleen and thymuses of Ndrg4(-/-) mice are considerably reduced in size from 3 weeks of age. Histological analysis revealed abnormal hyperkeratosis in the squamous foregut and abnormal loss of erythrocytes in the spleen of Ndrg4(-/-) mice. In addition, we observed an abnormal hind limb clasping phenotype upon tail suspension suggesting neurological abnormalities. Consistent to these abnormalities, Ndrg4 is expressed in smooth muscle cells of the stomach, macrophages of the spleen and neurons. Availability of the conditional allele for Ndrg4 should facilitate further detailed analyses of the potential roles of Ndrg4 in gut development, nervous system and immune system.


Assuntos
Anormalidades do Sistema Digestório/metabolismo , Retardo do Crescimento Fetal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Baço/anormalidades , Baço/metabolismo , Animais , Anormalidades do Sistema Digestório/patologia , Eritrócitos/patologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Baço/patologia , Taxa de Sobrevida
19.
Cell Rep ; 12(11): 1761-73, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26344773

RESUMO

Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.


Assuntos
Receptor de TIE-1/fisiologia , Receptor TIE-2/fisiologia , Remodelação Vascular/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Vasos Retinianos/fisiologia , Transdução de Sinais
20.
Arterioscler Thromb Vasc Biol ; 35(7): 1597-605, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023079

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is a significant cardiovascular disorder, and controversy exists as to whether it is primarily a dystrophic or osteogenic process in vivo. In this study, we sought to clarify the mechanism of CAVD by assessing a genetic mutation, Notch1 heterozygosity, which leads to CAVD with 100% penetrance in humans. APPROACH AND RESULTS: Murine immortalized Notch1(+/-) aortic valve interstitial cells (AVICs) were isolated and expanded in vitro. Molecular signaling of wild-type and Notch1(+/-) AVICs were compared to identify changes in pathways that have been linked to CAVD-transforming growth factor-ß1/bone morphogenetic protein, mitogen-activated protein kinase, and phosphoinositide 3-kinase/protein kinase B-and assessed for calcification potential. Additionally, AVIC mechanobiology was studied in a physiologically relevant, dynamic mechanical environment (10% cyclic strain) to investigate differences in responses between the cell types. We found that Notch1(+/-) AVICs resembled a myofibroblast-like phenotype expressing higher amounts of cadherin-11, a known mediator of dystrophic calcification, and decreased Runx2, a known osteogenic marker. We determined that cadherin-11 expression is regulated by Akt activity, and inhibition of Akt phosphorylation significantly reduced cadherin-11 expression. Moreover, in the presence of cyclic strain, Notch1(+/-) AVICs exhibited significantly upregulated phosphorylation of Akt at Ser473 and smooth muscle α-actin expression, indicative of a fully activated myofibroblast. Finally, these Notch1-mediated alterations led to enhanced dystrophic calcific nodule formation. CONCLUSIONS: This study presents novel insights in our understanding of Notch1-mediated CAVD by demonstrating that the mutation leads to AVICs that are fully activated myofibroblasts, resulting in dystrophic, but not osteogenic, calcification.


Assuntos
Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/genética , Calcinose/metabolismo , Mecanotransdução Celular/genética , Mutação , Miofibroblastos/metabolismo , Receptor Notch1/genética , Animais , Valva Aórtica/metabolismo , Caderinas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , MAP Quinase Quinase 2/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...