Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Br J Pharmacol ; 171(23): 5387-406, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25048571

RESUMO

BACKGROUND AND PURPOSE: Heteromerization of GPCRs is key to the integration of extracellular signals and the subsequent cell response via several mechanisms including heteromer-selective ligand binding, trafficking and/or downstream signalling. As the lysophosphatidylinositol GPCR 55 (GPR55) has been shown to affect the function of the cannabinoid receptor subtype 2 (CB2 receptor) in human neutrophils, we investigated the possible heteromerization of CB2 receptors with GPR55. EXPERIMENTAL APPROACH: The direct interaction of human GPR55 and CB2 receptors heterologously expressed in HEK293 cells was assessed by co-immunoprecipitation and bioluminescence resonance energy transfer assays. The effect of cross-talk on signalling was investigated at downstream levels by label-free real-time methods (Epic dynamic mass redistribution and CellKey impedance assays), ERK1/2-MAPK activation and gene reporter assays. KEY RESULTS: GPR55 and CB2 receptors co-localized on the surface of HEK293 cells, co-precipitated in membrane extracts and formed heteromers in living HEK293 cells. Whereas heteromerization led to a reduction in GPR55-mediated activation of transcription factors (nuclear factor of activated T-cells, NF-κB and cAMP response element), ERK1/2-MAPK activation was potentiated in the presence of CB2 receptors. CB2 receptor-mediated signalling was also affected by co-expression with GPR55. Label-free assays confirmed cross-talk between the two receptors. CONCLUSIONS AND IMPLICATIONS: Heteromers, unique signalling units, form in HEK293 cells expressing GPR55 and CB2 receptors. The signalling by agonists of either receptor was governed (i) by the presence or absence of the partner receptors (with the consequent formation of heteromers) and (ii) by the activation state of the partner receptor.


Assuntos
Receptor CB2 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptores de Canabinoides , Elemento de Resposta Sérica , Transdução de Sinais
2.
Br J Pharmacol ; 165(8): 2611-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21718301

RESUMO

BACKGROUND AND PURPOSE: Many GPCRs, including the CB(1) cannabinoid receptor, are down-regulated following prolonged agonist exposure by interacting with the GPCR-associated sorting protein-1 (GASP-1). The CB(1) receptor antagonist rimonabant has also recently been described to be an agonist at GPR55, a cannabinoid-related receptor. Here we investigated the post-endocytic properties of GPR55 after agonist exposure and tested whether GASP-1 is involved in this process. EXPERIMENTAL APPROACH: We evaluated the direct protein-protein interaction of GPR55 with GASP-1 using (i) GST-binding assays and (ii) co-immunoprecipitation assays in GPR55-HEK293 cells with endogenous GASP-1 expression. We further tested the internalization, recycling and degradation of GPR55 using confocal fluorescence microscopy and biotinylation assays in the presence and absence of GASP-1 (lentiviral small hairpin RNA knockdown of GASP-1) under prolonged agonist [rimonabant (RIM), lysophosphatidylinositol (LPI)] stimulation. KEY RESULTS: We showed that the prolonged activation of GPR55 with rimonabant or LPI down-regulates GPR55 via GASP-1. GASP-1 binds to GPR55 in vitro, and this interaction was required for targeting GPR55 for degradation. Disrupting the GPR55-GASP-1 interaction prevented post-endocytic receptor degradation, and thereby allowed receptor recycling. CONCLUSION AND IMPLICATIONS: These data implicate GASP-1 as an important regulator of ligand-mediated down-regulation of GPR55. By identifying GASP-1 as a key regulator of the trafficking and, by extension, functional expression of GPR55, we may be one step closer to gaining a better understanding of this receptor in response to cannabinoid drugs. LINKED ARTICLES: This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Regulação para Baixo , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Ligantes , Lisofosfolipídeos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/agonistas , Proteínas Recombinantes de Fusão/metabolismo , Rimonabanto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...