Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668676

RESUMO

Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.

2.
Sci Rep ; 9(1): 17137, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729419

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 10341, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316115

RESUMO

Isoflavones are a group of phytoestrogens, naturally-occurring substances important for their role in human health. Legumes, particularly soybeans (Glycine max (L.) Merr.), are the richest source of isoflavones in human diet. Since there is not much current data on genetics of isoflavones in soybean, particularly in the aglycone form, elucidation of the mode of inheritance is necessary in order to design an efficient breeding strategy for the development of high-isoflavone soybean genotypes. Based on the isoflavone content in 23 samples of soybeans from four different maturity groups (00, 0, I and II), three crosses were made in order to determine the inheritance pattern and increase the content of total isoflavones and their aglycone form. Genotype with the lowest total isoflavone content (NS-L-146) was crossed with the low- (NS Zenit), medium (NS Maximus), and high- (NS Virtus) isoflavone genotypes. There were no significant differences in the total isoflavone content (TIF) between F2 populations, and there was no transgression among genotypes within the populations. Each genotype within all three populations had a higher TIF value than the lower parent (NS-L-146), while genotypes with a higher TIF value than the better parent were found only in the NS-L-146 × NS Zenit cross. However, significant differences in the aglycone ratio (ratio of aglycone to glycone form of isoflavones) were found between the populations. The highest aglycone ratio was found in the NS-L-146 × NS Maximus cross. The results indicate that the genetic improvement for the trait is possible.


Assuntos
Glycine max/metabolismo , Isoflavonas/metabolismo , Cruzamentos Genéticos , Genótipo , Hibridização Genética , Padrões de Herança , Isoflavonas/química , Fitoestrógenos/química , Fitoestrógenos/metabolismo , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo , Glycine max/genética
4.
Front Plant Sci ; 9: 1286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233624

RESUMO

Soybean time of flowering and maturity are genetically controlled by E genes. Different allelic combinations of these genes determine soybean adaptation to a specific latitude. The paper describes the first attempt to assess adaptation of soybean genotypes developed and realized at Institute of Field and Vegetable Crops, Novi Sad, Serbia [Novi Sad (NS) varieties and breeding lines] based on E gene variation, as well as to comparatively assess E gene variation in North-American (NA), Chinese, and European genotypes, as most of the studies published so far deal with North-American and Chinese cultivars and breeding material. Allelic variation and distribution of the major maturity genes (E1, E2, E3, and E4) has been determined in 445 genotypes from soybean collections of NA ancestral lines, Chinese germplasm, and European varieties, as well as NS varieties and breeding lines. The study showed that allelic combinations of E1-E4 genes significantly determined the adaptation of varieties to different geographical regions, although they have different impacts on maturity. In general, each collection had one major E genotype haplogroup, comprising over 50% of the lines. The exceptions were European varieties that had two predominant haplogroups and NA ancestral lines distributed almost evenly among several haplogroups. As e1-as/e2/E3/E4 was the most common genotype in NS population, present in the best-performing genotypes in terms of yield, this specific allele combination was proposed as the optimal combination for the environments of Central-Eastern Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...