Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(31): 18952-18965, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916288

RESUMO

The solid-state 1H, 31P NMR spectra and cross-polarization (CP MAS) kinetics in the series of samples containing amorphous phosphate phase (AMP), composite of AMP + nano-structured calcium hydroxyapatite (nano-CaHA) and high-crystalline nano-CaHA were studied under moderate spinning rates (5-30 kHz). The combined analysis of the solid-state 1H and 31P NMR spectra provides the possibility to determine the hydration numbers of the components and the phase composition index. A broad set of spin dynamics models (isotropic/anisotropic, relaxing/non-relaxing, secular/semi-non-secular) was applied and fitted to the experimental CP MAS data. The anisotropic model with the angular averaging of dipolar coupling was applied for AMP and nano-CaHA for the first time. It was deduced that the spin diffusion in AMP is close to isotropic, whereas it is highly anisotropic in nano-CaHA being close to the Ising-type. This can be caused by the different number of internuclear interactions that must be explicitly considered in the spin system for AMP (I-S spin pair) and nano-CaHA (IN-S spin system with N ≥ 2). The P-H distance in nano-CaHA was found to be significantly shorter than its crystallographic value. An underestimation can be caused by several factors, among those - proton conductivity via a large-amplitude motion of protons (O-H tumbling and the short-range diffusion) that occurs along OH- chains. The P-H distance deduced for AMP, i.e. the compound with HPO42- as the dominant structure, is fairly well matched to the crystallographic data. This means that the CP MAS kinetics is a capable technique to obtain complementary information on the proton localization in H-bonds and the proton transfer in the cases where traditional structure determination methods fail.


Assuntos
Durapatita , Prótons , Monofosfato de Adenosina , Cristalografia , Espectroscopia de Ressonância Magnética/métodos
2.
Sci Rep ; 12(1): 7116, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504944

RESUMO

In the present work, three different Mn2+-doped calcium pyrophosphate (CPP, Ca2P2O7) polymorphs were synthesized by wet co-precipitation method followed by annealing at different temperatures. The crystal structure and purity were studied by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (SS-NMR), and electron paramagnetic resonance (EPR) spectroscopies. Scanning electron microscopy (SEM) was used to investigate the morphological features of the synthesized products. Optical properties were investigated using photoluminescence measurements. Excitation spectra, emission spectra, and photoluminescence decay curves of the samples were studied. All Mn-doped polymorphs exhibited a broadband emission ranging from approximately 500 to 730 nm. The emission maximum was host-dependent and centered at around 580, 570, and 595 nm for γ-, ß-, and α-CPP, respectively.


Assuntos
Pirofosfato de Cálcio , Luminescência , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
J Phys Chem B ; 125(48): 13255-13266, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34806880

RESUMO

The 1H NMR chemical shift of water exhibits non-monotonic dependence on the composition of an aqueous mixture of 1-butyl-3-methylimidazolium chloride, [C4mim][Cl], ionic liquid (IL). A clear minimum is observed for the 1H NMR chemical shift at a molar fraction of the IL of 0.34. To scrutinize the molecular mechanism behind this phenomenon, extensive classical molecular dynamics simulations of [C4mim][Cl] IL and its mixtures with water were carried out. A combined quantum mechanics/molecular mechanics approach based on the density functional theory was applied to predict the NMR chemical shifts. The proliferation of strongly hydrogen-bonded complexes between chloride anions and water molecules is found to be the reason behind the increasing 1H NMR chemical shift of water when its molar fraction in the mixture is low and decreasing. The model shows that the chemical shift of water molecules that are trapped in the IL matrix without direct hydrogen bonding to the anions is considerably smaller than the 1H NMR chemical shift predicted for the neat water. The structural features of neat IL and its mixtures with water have also been analyzed in relation to their NMR properties. The 1H NMR spectrum of neat [C4mim][Cl] was predicted and found to be in very reasonable agreement with the experimental data. Finally, the experimentally observed strong dependence of the chemical shift of the proton at position 2 in the imidazolium ring on the composition of the mixture was rationalized.


Assuntos
Líquidos Iônicos , Cloretos , Espectroscopia de Prótons por Ressonância Magnética , Prótons , Água
4.
J Phys Chem B ; 125(45): 12592-12602, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748346

RESUMO

The 1H-13C cross-polarization (CP) kinetics in poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) was studied under moderate (10 kHz) magic-angle spinning (MAS). To elucidate the role of adsorbed water in spin diffusion and proton conductivity, PMETAC was degassed under vacuum. The CP MAS results were processed by applying the anisotropic Naito and McDowell spin dynamics model, which includes the complete scheme of the rotating frame spin-lattice relaxation pathways. Some earlier studied proton-conducting and nonconducting polymers were added to the analysis in order to prove the capability of the used approach and to get more general conclusions. The spin-diffusion rate constant, which describes the damping of the coherences, was found to be strongly depending on the dipolar I-S coupling constant (DIS). The spin diffusion, associated with the incoherent thermal equilibration with the bath, was found to be most probably independent of DIS. It was deduced that the drying scarcely influences the spin-diffusion rates; however, it significantly (1 order of magnitude) reduces the rotating frame spin-lattice relaxation times. The drying causes the polymer hardening that reflects the changes of the local order parameters. The impedance spectroscopy was applied to study proton conductivity. The activation energies for dielectric relaxation and proton conductivity were determined, and the vehicle-type conductivity mechanism was accepted. The spin-diffusion processes occur on the microsecond scale and are one order faster than the dielectric relaxation. The possibility to determine the proton location in the H-bonded structures in powders using CP MAS technique is discussed.


Assuntos
Polímeros , Prótons , Espectroscopia Dielétrica , Difusão , Espectroscopia de Ressonância Magnética
5.
J Phys Chem B ; 124(47): 10776-10786, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33183008

RESUMO

The 1H NMR spectra of 10-5 mole fraction solutions of 1-decyl-3-methyl-imidazolium chloride ionic liquid in water, acetonitrile, and dichloromethane have been measured. The chemical shift of the proton at position 2 in the imidazolium ring of 1-decyl-3-methyl-imidazolium (H2) is rather different for all three samples, reflecting the shifting equilibrium between the contact pairs and free fully solvated ions. Classical molecular dynamics simulations of the 1-decyl-3-methyl-imidazolium chloride contact ion pair as well as of free ions in water, acetonitrile, and dichloromethane have been conducted, and the quantum mechanics/molecular mechanics methods have been applied to predict NMR chemical shifts for the H2 proton. The chemical shift of the H2 proton was found to be primarily modulated by hydrogen bonding with the chloride anion, while the influence of the solvents-though differing in polarity and capabilities for hydrogen bonding-is less important. By comparing experimental and computational results, we deduce that complete disruption of the ionic liquid into free ions takes place in an aqueous solution. Around 23% of contact ion pairs were found to persist in acetonitrile. Ion-pair breaking into free ions was predicted not to occur in dichloromethane.

6.
Photosynth Res ; 144(3): 301-315, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266612

RESUMO

Plants possess an essential ability to rapidly down-regulate light-harvesting in response to high light. This photoprotective process involves the formation of energy-quenching interactions between the chlorophyll and carotenoid pigments within the antenna of Photosystem II (PSII). The nature of these interactions is currently debated, with, among others, 'incoherent' or 'coherent' quenching models (or a combination of the two) suggested by a range of time-resolved spectroscopic measurements. In 'incoherent quenching', energy is transferred from a chlorophyll to a carotenoid and is dissipated due to the intrinsically short excitation lifetime of the latter. 'Coherent quenching' would arise from the quantum mechanical mixing of chlorophyll and carotenoid excited state properties, leading to a reduction in chlorophyll excitation lifetime. The key parameters are the energy gap, [Formula: see text] and the resonance coupling, J, between the two excited states. Coherent quenching will be the dominant process when [Formula: see text] i.e., when the two molecules are resonant, while the quenching will be largely incoherent when [Formula: see text] One would expect quenching to be energetically unfavorable for [Formula: see text] The actual dynamics of quenching lie somewhere between these limiting regimes and have non-trivial dependencies of both J and [Formula: see text] Using the Hierarchical Equation of Motion (HEOM) formalism we present a detailed theoretical examination of these excitation dynamics and their dependence on slow variations in J and [Formula: see text] We first consider an isolated chlorophyll-carotenoid dimer before embedding it within a PSII antenna sub-unit (LHCII). We show that neither energy transfer, nor the mixing of excited state lifetimes represent unique or necessary pathways for quenching and in fact discussing them as distinct quenching mechanisms is misleading. However, we do show that quenching cannot be switched 'on' and 'off' by fine tuning of [Formula: see text] around the resonance point, [Formula: see text] Due to the large reorganization energy of the carotenoid excited state, we find that the presence (or absence) of coherent interactions have almost no impact of the dynamics of quenching. Counter-intuitively significant quenching is present even when the carotenoid excited state lies above that of the chlorophyll. We also show that, above a rather small threshold value of [Formula: see text]quenching becomes less and less sensitive to J (since in the window [Formula: see text] the overall lifetime is independent of it). The requirement for quenching appear to be only that [Formula: see text] Although the coherent/incoherent character of the quenching can vary, the overall kinetics are likely robust with respect to fluctuations in J and [Formula: see text] This may be the basis for previous observations of NPQ with both coherent and incoherent features.


Assuntos
Carotenoides/química , Clorofila/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Plantas/química , Carotenoides/efeitos da radiação , Clorofila/efeitos da radiação , Cinética , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Modelos Teóricos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Fenômenos Fisiológicos Vegetais , Plantas/efeitos da radiação
7.
Solid State Nucl Magn Reson ; 105: 101641, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31887667

RESUMO

The 1H-13C cross-polarization magic angle spinning kinetics was studied in poly(2-hydroxyethyl methacrylate) (pHEMA), i.e. a soft material with high degrees of internal freedom and molecular disorder, having the purpose to track the influence of increasing local incoherent contributions to the effects of coherent nature in the open quantum spin systems. The experimental CP MAS kinetic curves were analyzed in the frame of the models of isotropic and anisotropic spin diffusion with thermal equilibration. The rates of spin diffusion and spin-lattice relaxation as well as the profiles of distribution of dipolar coupling, the parameters accounting the effective size of spin clusters and the local order parameters were determined. The intensities of the peaks of periodic quasi-equilibrium origin gradually decrease with increasing disorder, i.e. going from most ordered to more disordered sites in the polymer. Assuming that the thermal motion induced by the temperature gradients is much faster than the equilibration driven by spin diffusion due the difference in spin temperatures, it was deduced that the thermal equilibration in pHEMA occurs in the time scale of 10-4 s. This is one order of magnitude faster than the spectral spin diffusion, which occurs between spins having different resonance frequencies. The thermal equilibration in the case of remote spin clusters was described by the 'stretched exponent' decay. This led to the fractal dimension Dp ≈ 1.65 for both carbon sites (quaternary and carbonyl). The obtained Dp value corresponds to the aggregates, which images are very similar to those for pHEMA and some other related polymer structures are usually conceived.

8.
J Phys Chem B ; 123(43): 9187-9197, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31591890

RESUMO

As the development of the work (J. Phys. Chem. B 2019, 123 (10), 2362-2372), we have investigated the translational mobility in the same set of dried imidazolium-based ionic liquids (ILs) [bmim]A (A = BF4-, NO3-, TfO-, I-, Br-, and Cl-) in a wide temperature range using the NMR technique. It is shown that for the [bmim]+ cation, the temperature dependencies of product Dη do not follow the Stokes-Einstein relation for most systems studied, that is, the so-called "diffusion-viscosity decoupling" was realized. The correlation between local and translational mobility in pure IL of the [bmim][A] type was investigated using the data on NMR relaxation rates and diffusion coefficients. The most recent hypothesis of "water pockets" in mixtures of IL with water is critically discussed. Considering the totality of data in the literature and obtained here, we propose a specific model of the microstructure which may be applied up to water concentrations of 80-90 mol % (the structure of water-rich solutions is out of our current consideration). To confirm the model, molecular dynamics simulations of "IL-water" mixtures were also carried out.

9.
Phys Chem Chem Phys ; 21(41): 23187-23197, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31612872

RESUMO

Carotenoids in photosynthetic proteins carry out the dual function of harvesting light and defending against photo-damage by quenching excess energy. The latter involves the low-lying, dark, excited state labelled S1. Here "dark" means optically-forbidden, a property that is often attributed to molecular symmetry, which leads to speculation that its optical properties may be strongly-perturbed by structural distortions. This has been both explicitly and implicitly proposed as an important feature of photo-protective energy quenching. Here we present a theoretical analysis of the relationship between structural distortions and S1 optical properties. We outline how S1 is dark not because of overall geometric symmetry but because of a topological symmetry related to bond length alternation in the conjugated backbone. Taking the carotenoid echinenone as an example and using a combination of molecular dynamics, quantum chemistry, and the theory of spectral lineshapes, we show that distortions that break this symmetry are extremely stiff. They are therefore absent in solution and only marginally present in even a very highly-distorted protein binding pocket such as in the Orange Carotenoid Protein (OCP). S1 remains resolutely optically-forbidden despite any breaking of bulk molecular symmetry by the protein environment. However, rotations of partially conjugated end-rings can result in fine tuning of the S1 transition density which may exert some influence on interactions with neighbouring chromophores.


Assuntos
Carotenoides/química , Fenômenos Ópticos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
11.
Chem Sci ; 10(18): 4792-4804, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31183032

RESUMO

In some molecular systems, such as nucleobases, polyenes or the active ingredients of sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale, raising questions such as: where does this energy go or among which degrees of freedom it is being distributed at such early times? Here we use transient absorption spectroscopy to track excitation energy dispersing from the optically accessible vibronic subsystem into the remaining vibrational subsystem of the solute and solvent. Monitoring the flow of energy during vibrational redistribution enables quantification of local molecular heating. Subsequent heat dissipation away from the solute molecule is characterized by classical thermodynamics and molecular dynamics simulations. Hence, we present a holistic approach that tracks the internal temperature and vibronic distribution from the act of photo-excitation to the restoration of the global equilibrium. Within this framework internal vibrational redistribution and vibrational cooling are emergent phenomena. We demonstrate the validity of the framework by examining a highly controversial example, carotenoids. We show that correctly accounting for the local temperature unambiguously explains their energetically and temporally congested spectral dynamics without the ad hoc postulation of additional 'dark' states. An immediate further application of this approach would be to monitor the excitation and thermal dynamics of pigment-protein systems.

12.
J Phys Chem B ; 123(10): 2362-2372, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30779569

RESUMO

The detailed investigation of the local mobility in a set of dried imidazolium-based ionic liquids (1-butyl-3-methylimidazolium) in a wide temperature range and varying anions (BF4-, I-, Cl-, Br-, NO3-, TfO-) is presented. The measurements of temperature dependencies of the spin-lattice relaxation times of 1H and 13C nuclei are motivated by the need to obtain a fundamental characterization of molecular mobility of the substances under study, namely, to estimate the correlation times, τc, for the motion of individual molecular groups. In particular, it follows from obtained results that the mobility of the hydrocarbon "tail" is higher (smaller τc) than that of the imidazole ring, and this expected tendency is quantified. The effect of the influence of an anion type on the cation mobility is also analyzed.

13.
J Phys Chem A ; 122(45): 8938-8947, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30354129

RESUMO

The 1H-13C CP MAS kinetic curves were measured in glycine powder sample at the MAS rates of 7, 10, and 12 kHz. Each experimental curve contained up to 1000 equidistant points over the whole contact time range of 10 µs - 10 ms. The CP kinetic data for CH2 group, i.e., for the system containing adjacent 1H-13C spin pairs with a definite dominant dipolar coupling can be described in the frame of the isotropic spin-diffusion approach. The local order parameter ⟨ S⟩ ≈ 1.0, determined as the ratio of the measured dipolar 1H-13C coupling constant and the calculated static dipolar coupling constant, is very close to the values deduced in series of other amino acids. The strong narrow peaks observed in the spin coupling spectrum at multiples of the MAS frequency can be considered as the confirmation that the periodic quasi-equilibrium state can appear also in the powder samples. The anisotropic spin-diffusion approach improved by the introducing of the thermal equilibration in the proton bath is the most proper model to describe the CP kinetics in the system containing remote spins. Very realistic values of the spin-cluster size ( N) have been obtained without any constraint on the flow of the nonlinear curve fitting. The finite values of N ≤ 4 means that CP transfer is located within one glycine molecule.

14.
J Phys Chem A ; 122(34): 6894-6902, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30078322

RESUMO

Solvent and temperature effects on H-bonding in crystalline picolinic acid N-oxide (PANO) and in solutions were studied by NMR (1H MAS and 1H-13C CP/MAS) and X-ray diffraction (XRD) methods. The single-crystal XRD experiments on ß-polymorph were carried out at 105 and 299 K. 13C chemical shifts of PANO pyridine ring carbons were chosen as an effective diagnostic tool for the H-bond sensing. The crystal field in PANO forces the proton displacement from donor to acceptor atoms much stronger than the solvent reaction field, including that created by the most polar solvents. NMR and XRD data for crystalline PANO do not confirm any H-bond geometry changes in the studied temperature range. On the contrary, a considerable contraction of r(O-H) bond was observed for PANO in acetonitrile (ACN) solution upon heating. The relative contraction of r(O-H) bond with respect to R(O···O) perfectly fits the global dielectric scheme deduced for a vast set of common solvents and the dependence of the dielectric permittivity of ACN on temperature. The subtle H-bond changes can be explained by the temperature dependence of the shape of potential energy surface in the liquid state. Both factors, temperature and dielectric permittivity, are comparable in triggering this effect.

15.
Biochim Biophys Acta Bioenerg ; 1859(7): 471-481, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625089

RESUMO

The bioenergetics of light-harvesting by photosynthetic antenna proteins in higher plants is well understood. However, investigation into the regulatory non-photochemical quenching (NPQ) mechanism, which dissipates excess energy in high light, has led to several conflicting models. It is generally accepted that the major photosystem II antenna protein, LHCII, is the site of NPQ, although the minor antenna complexes (CP24/26/29) are also proposed as alternative/additional NPQ sites. LHCII crystals were shown to exhibit the short excitation lifetime and several spectral signatures of the quenched state. Subsequent structure-based models showed that this quenching could be explained by slow energy trapping by the carotenoids, in line with one of the proposed models. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we show that the crystal structure of CP29 corresponds to a strongly quenched conformation. Using a structure-based theoretical model we show that this quenching may be explained by the same slow, carotenoid-mediated quenching mechanism present in LHCII crystals.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Cristalização , Transferência de Energia , Fluorescência , Simulação de Dinâmica Molecular
16.
J Phys Chem B ; 122(12): 3047-3055, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29489366

RESUMO

Temperature and composition effects in Sunset Yellow FCF (SSY) aqueous solutions were studied by the 1H, 15N NMR as well as Raman spectroscopy passing through all phase transitions between isotropic phase (I) and chromonic phases-nematic (N) and columnar (M). It was shown that the tautomeric equilibrium in SSY is strongly shifted toward the hydrazone form. The corresponding equilibrium constant p KT = 2.5 was deduced using the density functional theory solvent model density model. The dominance of the hydrazone form was confirmed experimentally using the long-range 1H-15N correlation, widely known as heteronuclear multiple bond correlation. The peak found in the 1H NMR spectra at ca. 14.5 ppm can be attributed to the proton in the intramolecular N-H···O bond. The existence of this signal shows that (i) the growth of the SSY aggregates is accompanied by the segregation of water in the intercolumnar areas with no access for exchange with the N-H protons in the internal layers of the columnar stacks and that (ii) the lifetime of those aggregates is ≥10-8 s or even longer. The temperature dependences of H2O chemical shift and Raman O-H stretching band shape show that water confined in the intercolumnar areas behaves as in the neat substance. When the sample is heated and the transition from M phase to N phase occurs, the molecular motion of water is seen to change in a manner similar to that when water is melting. The equilibration time for N + M→ M is very long because of slow supramolecular restructuring, i.e., the growing of columnar stacks and building of hexagonal arrays. If the sample is cooled down to the temperature below N → M transition relatively fast, the structural changes are behind, and the system falls into supercooled state. In this case, the system evolves via long-lasting self-assembling from the supercooled state to the equilibrium. This process affects the shape of the 1H NMR signal and is easy to monitor.

17.
Photosynth Res ; 135(1-3): 55-64, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28741055

RESUMO

Carotenoids are fundamental building blocks of natural light harvesters with convoluted and ultrafast energy deactivation networks. In order to disentangle such complex relaxation dynamics, several studies focused on transient absorption measurements and their dependence on the pump wavelength. However, such findings are inconclusive and sometimes contradictory. In this study, we compare internal conversion dynamics in [Formula: see text]-carotene, pumped at the first, second, and third vibronic progression peak. Instead of employing data fitting algorithms based on global analysis of the transient absorption spectra, we apply a fully quantum mechanical model to treat the high-frequency symmetric carbon-carbon (C=C and C-C) stretching modes explicitly. This model successfully describes observed population dynamics as well as spectral line shapes in their time-dependence and allows us to reach two conclusions: Firstly, the broadening of the induced absorption upon excess excitation is an effect of vibrational cooling in the first excited state ([Formula: see text]). Secondly, the internal conversion rate between the second excited state ([Formula: see text]) and [Formula: see text] crucially depends on the relative curve displacement. The latter point serves as a new perspective on solvent- and excitation wavelength-dependent experiments and lifts contradictions between several studies found in literature.


Assuntos
Carotenoides/química , Vibração , Cicloexanos/química , Luz , Modelos Biológicos , Espectroscopia de Luz Próxima ao Infravermelho
18.
Sci Rep ; 7(1): 13956, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066753

RESUMO

Photosynthetic antenna proteins can be thought of as "programmed solvents", which bind pigments at specific mutual orientations, thus tuning the overall energetic landscape and ensuring highly efficient light-harvesting. While positioning of chlorophyll cofactors is well understood and rationalized by the principle of an "energy funnel", the carotenoids still pose many open questions. Particularly, their short excited state lifetime (<25 ps) renders them potential energy sinks able to compete with the reaction centers and drastically undermine light-harvesting efficiency. Exploration of the orientational phase-space revealed that the placement of central carotenoids minimizes their interaction with the nearest chlorophylls in the plant antenna complexes LHCII, CP26, CP29 and LHCI. At the same time we show that this interaction is highly sensitive to structural perturbations, which has a profound effect on the overall lifetime of the complex. This links the protein dynamics to the light-harvesting regulation in plants by the carotenoids.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Plantas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Plantas/enzimologia , Conformação Proteica
19.
Phys Chem Chem Phys ; 19(34): 22957-22968, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28813042

RESUMO

Plant light-harvesting is regulated by the Non-Photochemical Quenching (NPQ) mechanism involving the reversible formation of excitation quenching sites in the Photosystem II (PSII) antenna in response to high light. While the major antenna complex, LHCII, is known to be a site of NPQ, the precise mechanism of excitation quenching is not clearly understood. A preliminary model of the quenched crystal structure of LHCII implied that quenching arises from slow energy capture by Car pigments. It predicted a thoroughly quenched system but offered little insight into the defining aspects of this quenching. In this work, we present a thorough theoretical investigation of this quenching, addressing the factors defining the quenching pathway and possible mechanism for its (de)activation. We show that quenching in LHCII crystals is the result of slow energy transfer from chlorophyll to the centrally-bound lutein Cars, predominantly the Lut620 associated with the chlorophyll 'terminal emitter', one of the proposed in vivo pathways. We show that this quenching is rather independent of the particular species of Car and excitation 'site' energy. The defining parameter is the resonant coupling between the pigment co-factors. Lastly, we show that these interactions must be severely suppressed for a light-harvesting state to be recovered.

20.
J Phys Chem Lett ; 7(17): 3347-52, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27509302

RESUMO

In π-conjugated chain molecules such as carotenoids, coupling between electronic and vibrational degrees of freedom is of central importance. It governs both dynamic and static properties, such as the time scales of excited state relaxation as well as absorption spectra. In this work, we treat vibronic dynamics in carotenoids on four electronic states (|S0⟩, |S1⟩, |S2⟩, and |Sn⟩) in a physically rigorous framework. This model explains all features previously associated with the intensely debated S* state. Besides successfully fitting transient absorption data of a zeaxanthin homologue, this model also accounts for previous results from global target analysis and chain length-dependent studies. Additionally, we are able to incorporate findings from pump-deplete-probe experiments, which were incompatible to any pre-existing model. Thus, we present the first comprehensive and unified interpretation of S*-related features, explaining them by vibronic transitions on either S1, S0, or both, depending on the chain length of the investigated carotenoid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...