Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6810, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935706

RESUMO

Lava fountains are a common manifestation of basaltic volcanism. While magma degassing plays a clear key role in their generation, the controls on their duration and intermittency are only partially understood, not least due to the challenges of measuring the most abundant gases, H2O and CO2. The 2021 Fagradalsfjall eruption in Iceland included a six-week episode of uncommonly periodic lava fountaining, featuring ~ 100-400 m high fountains lasting a few minutes followed by repose intervals of comparable duration. Exceptional conditions on 5 May 2021 permitted close-range (~300 m), highly time-resolved (every ~ 2 s) spectroscopic measurement of emitted gases during 16 fountain-repose cycles. The observed proportions of major and minor gas molecular species (including H2O, CO2, SO2, HCl, HF and CO) reveal a stage of CO2 degassing in the upper crust during magma ascent, followed by further gas-liquid separation at very shallow depths (~100 m). We explain the pulsatory lava fountaining as the result of pressure cycles within a shallow magma-filled cavity. The degassing at Fagradalsfjall and our explanatory model throw light on the wide spectrum of terrestrial lava fountaining and the subsurface cavities associated with basaltic vents.

2.
Nature ; 609(7927): 529-534, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104557

RESUMO

Recent Icelandic rifting events have illuminated the roles of centralized crustal magma reservoirs and lateral magma transport1-4, important characteristics of mid-ocean ridge magmatism1,5. A consequence of such shallow crustal processing of magmas4,5 is the overprinting of signatures that trace the origin, evolution and transport of melts in the uppermost mantle and lowermost crust6,7. Here we present unique insights into processes occurring in this zone from integrated petrologic and geochemical studies of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula in Iceland. Geochemical analyses of basalts erupted during the first 50 days of the eruption, combined with associated gas emissions, reveal direct sourcing from a near-Moho magma storage zone. Geochemical proxies, which signify different mantle compositions and melting conditions, changed at a rate unparalleled for individual basaltic eruptions globally. Initially, the erupted lava was dominated by melts sourced from the shallowest mantle but over the following three weeks became increasingly dominated by magmas generated at a greater depth. This exceptionally rapid trend in erupted compositions provides an unprecedented temporal record of magma mixing that filters the mantle signal, consistent with processing in near-Moho melt lenses containing 107-108 m3 of basaltic magma. Exposing previously inaccessible parts of this key magma processing zone to near-real-time investigations provides new insights into the timescales and operational mode of basaltic magma systems.

3.
Contrib Mineral Petrol ; 173(2): 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31983759

RESUMO

The 2014-2015 Holuhraun eruption, on the Bárðarbunga volcanic system in central Iceland, was one of the best-monitored basaltic fissure eruptions that has ever occurred, and presents a unique opportunity to link petrological and geochemical data with geophysical observations during a major rifting episode. We present major and trace element analyses of melt inclusions and matrix glasses from a suite of ten samples collected over the course of the Holuhraun eruption. The diversity of trace element ratios such as La/Yb in Holuhraun melt inclusions reveals that the magma evolved via concurrent mixing and crystallization of diverse primary melts in the mid-crust. Using olivine-plagioclase-augite-melt (OPAM) barometry, we calculate that the Holuhraun carrier melt equilibrated at 2.1 ± 0.7 kbar (7.5 ± 2.5 km), which is in agreement with the depths of earthquakes (6 ± 1 km) between Bárðarbunga central volcano and the eruption site in the days preceding eruption onset. Using the same approach, melt inclusions equilibrated at pressures between 0.5 and 8.0 kbar, with the most probable pressure being 3.2 kbar. Diffusion chronometry reveals minimum residence timescales of 1-12 days for melt inclusion-bearing macrocrysts in the Holuhraun carrier melt. By combining timescales of diffusive dehydration of melt inclusions with the calculated pressure of H2O saturation for the Holuhraun magma, we calculate indicative magma ascent rates of 0.12-0.29 m s-1. Our petrological and geochemical data are consistent with lateral magma transport from Bárðarbunga volcano to the eruption site in a shallow- to mid-crustal dyke, as has been suggested on the basis of seismic and geodetic datasets. This result is a significant step forward in reconciling petrological and geophysical interpretations of magma transport during volcano-tectonic episodes, and provides a critical framework for the interpretation of premonitory seismic and geodetic data in volcanically active regions.

4.
Science ; 353(6296): aaf8988, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418515

RESUMO

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

5.
Nature ; 495(7440): 220-2, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23486061

RESUMO

In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...