Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
NMR Biomed ; 35(11): e4796, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35778859

RESUMO

Microvascular function is an important component in the physiology of muscle. One of the major parameters, blood perfusion, can be measured noninvasively and quantitatively by arterial spin labeling (ASL) MRI. Most studies using ASL in muscle have only reported data from a single slice, thereby assuming that muscle perfusion is homogeneous within muscle, whereas recent literature has reported proximodistal differences in oxidative capacity and perfusion. Here, we acquired pulsed ASL data in 12 healthy volunteers after dorsiflexion exercise in two slices separated distally by 7 cm. We combined this with a Look-Locker scheme to acquire images at multiple postlabeling delays (PLDs) and with a multiecho readout to measure T2 *. This enabled the simultaneous evaluation of quantitative muscle blood flow (MBF), arterial transit time (ATT), and T2 * relaxation time in the tibialis anterior muscle during recovery. Using repeated measures analyses of variance we tested the effect of time, slice location, and their interaction on MBF, ATT, and T2 *. Our results showed a significant difference as a function of time postexercise for all three parameters (MBF: F = 34.0, p < .0001; T2 *: F = 73.7, p < .0001; ATT: F = 13.6, p < .001) and no average differences between slices over the total time postexercise were observed. The interaction effect between time postexercise and slice location was significant for MBF and T2 * (F = 5.5, p = 0.02, F = 6.1, p = 0.02, respectively), but not for ATT (F = 2.2, p = .16). The proximal slice showed a higher MBF and a lower ATT than the distal slice during the first 2 min of recovery, and T2 * showed a delayed response in the distal slice. These results imply a higher perfusion and faster microvascular response to exercise in the proximal slice, in line with previous literature. Moreover, the differences in ATT indicate that it is difficult to correctly determine perfusion based on a single PLD as is commonly performed in the muscle literature.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético , Artérias , Circulação Cerebrovascular/fisiologia , Exercício Físico , Humanos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Marcadores de Spin
2.
Magn Reson Med ; 86(5): 2441-2453, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34105189

RESUMO

PURPOSE: Multislice arterial spin labeling (ASL) MRI acquisitions are currently challenging in skeletal muscle because of long transit times, translating into low-perfusion SNR in distal slices when large spatial coverage is required. However, fiber type and oxidative capacity vary along the length of healthy muscles, calling for multislice acquisitions in clinical studies. We propose a new variant of flow alternating inversion recovery (FAIR) that generates sufficient ASL signal to monitor exercise-induced perfusion changes in muscle in two distant slices. METHODS: Label around and between two 7-cm distant slices was created by applying the presaturation/postsaturation and selective inversion modules selectively to each slice (split-label multislice FAIR). Images were acquired using simultaneous multislice EPI. We validated our approach in the brain to take advantage of the high resting-state perfusion, and applied it in the lower leg muscle during and after exercise, interleaved with a single-slice FAIR as a reference. RESULTS: We show that standard multislice FAIR leads to an underestimation of perfusion, while the proposed split-label multislice approach shows good agreement with separate single-slice FAIR acquisitions in brain, as well as in muscle following exercise. CONCLUSION: Split-label FAIR allows measuring muscle perfusion in two distant slices simultaneously without losing sensitivity in the distal slice.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Perfusão , Reprodutibilidade dos Testes , Marcadores de Spin
3.
Metabolites ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922384

RESUMO

The cerebral metabolic rate of oxygen consumption (CMRO2) is a key metric to investigate the mechanisms involved in neurodegeneration in animal models and evaluate potential new therapies. CMRO2 can be measured by direct 17O magnetic resonance imaging (17O-MRI) of H217O signal changes during inhalation of 17O-labeled oxygen gas. In this study, we built a simple gas distribution system and used 3D zero echo time (ZTE-)MRI at 11.7 T to measure CMRO2 in the APPswe/PS1dE9 mouse model of amyloidosis. We found that CMRO2 was significantly lower in the APPswe/PS1dE9 brain than in wild-type at 12-14 months. We also estimated cerebral blood flow (CBF) from the post-inhalation washout curve and found no difference between groups. These results suggest that the lower CMRO2 observed in APPswe/PS1dE9 is likely due to metabolism impairment rather than to reduced blood flow. Analysis of the 17O-MRI data using different quantification models (linear and 3-phase model) showed that the choice of the model does not affect group comparison results. However, the simplified linear model significantly underestimated the absolute CMRO2 values compared to a 3-phase model. This may become of importance when combining several metabolic fluxes measurements to study neuro-metabolic coupling.

4.
NMR Biomed ; 32(9): e4119, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313867

RESUMO

The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10-3 ) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879-0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20-40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Adulto , Índice de Massa Corporal , Análise de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
5.
Magn Reson Med ; 82(3): 959-972, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31050049

RESUMO

PURPOSE: Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS: Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS: Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION: The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.


Assuntos
Bicarbonatos/química , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Masculino , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Razão Sinal-Ruído
6.
Cancers (Basel) ; 10(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189677

RESUMO

Optimal treatment selection for localized renal tumors is challenging due to their variable biological behavior and limited ability to pre-operatively assess their aggressiveness. We investigated hyperpolarized (HP) 13C pyruvate MRI to noninvasively assess tumor lactate production and compartmentalization, which are strongly associated with renal tumor aggressiveness. Orthotopic tumors were created in mice using human renal cell carcinoma (RCC) lines (A498, 786-O, UOK262) with varying expression of lactate dehydrogenase A (LDHA) which catalyzes the pyruvate-to-lactate conversion, and varying expression of monocarboxylate transporter 4 (MCT4) which mediates lactate export out of the cells. Dynamic HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C pyruvate-to-lactate conversion than the UOK262 and 786-O tumors, corresponding to higher A498 tumor LDHA expression. Additionally, diffusion-weighted HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C lactate apparent diffusion coefficients compared to 786-O tumors, with corresponding higher MCT4 expression, which likely reflects more rapid lactate export in the A498 tumors. Our data demonstrate the feasibility of HP 13C pyruvate MRI to inform on tumor lactate production and compartmentalization, and provide the scientific premise for future clinical investigation into the utility of this technique to noninvasively interrogate renal tumor aggressiveness and to guide treatment selection.

7.
Mol Ther Methods Clin Dev ; 7: 42-49, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29018835

RESUMO

The development of therapeutic clinical trials for glycogen storage disorders, including Pompe disease, has called for non-invasive and objective biomarkers. Glycogen accumulation can be measured in vivo with 13C MRS. However, clinical implementation remains challenging due to low signal-to-noise. On the other hand, the buildup of glycolytic intermediates may be detected with 31P MRS. We sought to identify new biomarkers of disease progression in muscle using 13C/31P MRS and 1H HR-MAS in a mouse model of Pompe disease (Gaa-/-). We evaluated the sensitivity of these MR biomarkers in vivo after treatment using an adeno-associated virus vector 2/9 encoding hGAA driven by the desmin promotor. 31P MRS showed significantly elevated phosphomonoesters (PMEs) in Gaa-/- compared to control at 2 (0.06 ± 0.02 versus 0.03 ± 0.01; p = 0.003), 6, 12, and 18 months of age. Correlative 1H HR-MAS measures in intact gastrocnemius muscles revealed high glucose-6-phosphate (G-6-P). After intramuscular AAV injections, glycogen, PME, and G-6-P were decreased within normal range. The changes in PME levels likely partly resulted from changes in G-6-P, one of the overlapping phosphomonoesters in the 31P MR spectra in vivo. Because 31P MRS is inherently more sensitive than 13C MRS, PME levels have greater potential as a clinical biomarker and should be considered as a complementary approach for future studies in Pompe patients.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28845464

RESUMO

The loss and recovery of muscle mass and function following injury and during rehabilitation varies among individuals. While recent expression profiling studies have illustrated transcriptomic responses to muscle disuse and remodeling, how these changes contribute to the physiological responses are not clear. In this study, we quantified the effects of immobilization and subsequent rehabilitation training on muscle size and identified molecular pathways associated with muscle responsiveness in an orthopaedic patient cohort study. The injured leg of 16 individuals with ankle injury was immobilized for a minimum of 4 weeks, followed by a 6-week rehabilitation program. The maximal cross-sectional area (CSA) of the medial gastrocnemius muscle of the immobilized and control legs were determined by T1-weighted axial MRI images. Genome-wide mRNA profiling data were used to identify molecular signatures that distinguish the patients who responded to immobilization and rehabilitation and those who were considered minimal responders. RESULTS: Using 6% change as the threshold to define responsiveness, a greater degree of changes in muscle size was noted in high responders (-14.9 ± 3.6%) compared to low responders (0.1 ± 0.0%) during immobilization. In addition, a greater degree of changes in muscle size was observed in high responders (20.5 ± 3.2%) compared to low responders (2.5 ± 0.9%) at 6-week rehabilitation. Microarray analysis showed a higher number of genes differentially expressed in the responders compared to low responders in general; with more expression changes observed at the acute stage of rehabilitation in both groups. Pathways analysis revealed top molecular pathways differentially affected in the groups, including genes involved in mitochondrial function, protein turn over, integrin signaling and inflammation. This study confirmed the extent of muscle atrophy due to immobilization and recovery by exercise training is associated with distinct remodeling signature, which can potentially be used for evaluating and predicting clinical outcomes.

9.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28708304

RESUMO

Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Rim/irrigação sanguínea , Rim/patologia , Traumatismo por Reperfusão/diagnóstico , Animais , Nitrogênio da Ureia Sanguínea , Peso Corporal , Ácido Desidroascórbico/metabolismo , Modelos Animais de Doenças , Rim/diagnóstico por imagem , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Tamanho do Órgão , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Traumatismo por Reperfusão/patologia
10.
Am J Physiol Renal Physiol ; 312(6): F1166-F1183, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331061

RESUMO

Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.


Assuntos
Injúria Renal Aguda/enzimologia , Necrose Tubular Aguda/enzimologia , Túbulos Renais Proximais/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Traumatismo por Reperfusão/enzimologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Fatores Etários , Animais , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Imunidade Inata , Isoenzimas , Necrose Tubular Aguda/genética , Necrose Tubular Aguda/imunologia , Necrose Tubular Aguda/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/ultraestrutura , Metaloproteinase 2 da Matriz/genética , Potencial da Membrana Mitocondrial , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Mitofagia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Necrose , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais
11.
Acta Myol ; 36(3): 151-162, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29774305

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) causes progressive pathologic changes to muscle secondary to a cascade of inflammation, lipid deposition, and fibrosis. Clinically, this manifests as progressive weakness, functional loss, and premature mortality. Though insult to whole muscle groups is well established, less is known about the relationship between intramuscular pathology and function. OBJECTIVE: Differences of intramuscular heterogeneity across muscle length were assessed using an ordinal MRI grading scale in lower leg muscles of boys with DMD and correlated to patient's functional status. METHODS: Cross sectional T1 weighted MRI images with fat suppression were obtained from ambulatory boys with DMD. Six muscles (tibialis anterior, extensor digitorum longus, peroneus, soleus, medial and lateral gastrocnemii) were graded using an ordinal grading scale over 5 slice sections along the lower leg length. The scores from each slice were combined and results were compared to global motor function and age. RESULTS: Statistically greater differences of involvement were observed at the proximal ends of muscle compared to the midbellies. Multi-slice assessment correlated significantly to age and the Vignos functional scale, whereas single-slice assessment correlated to the Vignos functional scale only. Lastly, differential disease involvement of whole muscle groups and intramuscular heterogeneity were observed amongst similar age subjects. CONCLUSION: A multi-slice ordinal MRI grading scale revealed that muscles are not uniformly affected, with more advanced disease visible near the tendons in a primarily ambulatory population with DMD. A geographically comprehensive evaluation of the heterogeneously affected muscle in boys with DMD may more accurately assess disease involvement.


Assuntos
Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/fisiopatologia , Subida de Escada , Tecido Adiposo/diagnóstico por imagem , Fatores Etários , Estudos de Casos e Controles , Criança , Fibrose , Humanos , Perna (Membro) , Masculino , Tendões/diagnóstico por imagem
12.
Biomed Res Int ; 2015: 387090, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380273

RESUMO

The genetic and molecular events associated with changes in muscle mass and function after SCI and after the implementation of candidate therapeutic approaches are still not completely known. The overall objective of this study was to identify key molecular pathways activated with muscle remodeling after SCI and locomotor training. We implemented treadmill training in a well-characterized rat model of moderate SCI and performed genome wide expression profiling on soleus muscles at multiple time points: 3, 8, and 14 days after SCI. We found that the activity of the protein ubiquitination and mitochondrial function related pathways was altered with SCI and corrected with treadmill training. The BMP pathway was differentially activated with early treadmill training as shown by Ingenuity Pathway Analysis. The expression of several muscle mass regulators was modulated by treadmill training, including Fst, Jun, Bmpr2, Actr2b, and Smad3. In addition, key players in fatty acids metabolism (Lpl and Fabp3) responded to both SCI induced inactivity and reloading with training. The decrease in Smad3 and Fst early after the initiation of treadmill training was confirmed by RT-PCR. Our data suggest that TGFß/Smad3 signaling may be mainly involved in the decrease in muscle mass observed with SCI, while the BMP pathway was activated with treadmill training.


Assuntos
Terapia por Exercício , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal/reabilitação , Animais , Proteínas Morfogenéticas Ósseas/análise , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Perfilação da Expressão Gênica , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Ratos , Traumatismos da Medula Espinal/fisiopatologia , Ubiquitinação
13.
J Inherit Metab Dis ; 38(5): 915-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25860817

RESUMO

Barth syndrome (BTHS) is an X-linked metabolic disorder that causes cardiomyopathy in infancy and is linked to mutations within the Tafazzin (TAZ) gene. The first mouse model, a TAZ knockdown model (TAZKD), has been generated to further understand the bioenergetics leading to cardiomyopathy. However, the TAZKD model does not show early signs of cardiomyopathy, and cardiac pathophysiology has not been documented until 7-8 months of age. Here we sought to determine the impact of endurance training on the cardiac and skeletal muscle phenotype in young TAZKD mice. TAZKD exercise trained (TAZKD-ET) and control exercise trained (CON-ET) mice underwent a 35-day swimming protocol. Non-trained aged matched TAZKD and CON mice were used as controls. At the end of the protocol, cardiac MRI was used to assess cardiac parameters. Cardiac MRI showed that training resulted in cardiac hypertrophy within both groups and did not result in a decline of ejection fraction. TAZKD mice exhibited a decrease in respiratory complex I, III, and IV enzymatic activity in cardiac tissue compared to control mice; however, training led to an increase in complex III activity in TAZKD-ET mice resulting in similar levels to those of CON-ET mice. (31)P magnetic resonance spectroscopy of the gastrocnemius showed a significantly lowered pH in TAZKD-ET mice post electrical-stimulation compared to CON-ET mice. Endurance training does not accelerate cardiac dysfunction in young TAZKD mice, but results in beneficial physiological effects. Furthermore, our results suggest that a significant drop in intracellular pH levels may contribute to oxidative phosphorylation defects during exercise.


Assuntos
Síndrome de Barth/patologia , Síndrome de Barth/terapia , Modelos Animais de Doenças , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Condicionamento Físico Animal/fisiologia , Resistência Física , Fatores de Transcrição/genética , Aciltransferases , Animais , Síndrome de Barth/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Exercício Físico/fisiologia , Tolerância ao Exercício/genética , Humanos , Camundongos , Camundongos Knockout , Resistência Física/genética , Resistência Física/fisiologia , Espécies Reativas de Oxigênio/metabolismo
14.
Eur J Appl Physiol ; 114(4): 847-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24399112

RESUMO

PURPOSE: Muscle paralysis after spinal cord injury leads to muscle atrophy, enhanced muscle fatigue, and increased energy demands for functional activities. Phosphorus magnetic resonance spectroscopy ((31)P-MRS) offers a unique non-invasive alternative of measuring energy metabolism in skeletal muscle and is especially suitable for longitudinal investigations. We determined the impact of spinal cord contusion on in vivo muscle bioenergetics of the rat hind limb muscle using (31)P-MRS. METHODS: A moderate spinal cord contusion injury (cSCI) was induced at the T8-T10 thoracic spinal segments. (31)P-MRS measurements were performed weekly in the rat hind limb muscles for 3 weeks. Spectra were acquired in a Bruker 11 T/470 MHz spectrometer using a 31P surface coil. The sciatic nerve was electrically stimulated by subcutaneous needle electrodes. Spectra were acquired at rest (5 min), during stimulation (6 min), and recovery (20 min). Phosphocreatine (PCr) depletion rates and the pseudo first-order rate constant for PCr recovery (k PCr) were determined. The maximal rate of PCr resynthesis, the in vivo maximum oxidative capacity (V max) and oxidative adenosine triphosphate (ATP) synthesis rate (Q max) were subsequently calculated. RESULTS: One week after cSCI, there was a decline in the resting total creatine of the paralyzed muscle. There was a significant reduction (~24 %) in k PCr measures of the paralyzed muscle, maximum in vivo mitochondrial capacity (V max) and the maximum oxidative ATP synthesis rate (Q max) at 1 week post-cSCI. During exercise, the PCr depletion rates in the paralyzed muscle one week after injury were rapid and to a greater extent than in a healthy muscle. CONCLUSIONS: Using in vivo MRS assessments, we reveal an acute oxidative metabolic defect in the paralyzed hind limb muscle. These altered muscle bioenergetics might contribute to the host of motor dysfunctions seen after cSCI.


Assuntos
Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Traumatismos da Medula Espinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Espectroscopia de Ressonância Magnética , Músculo Esquelético/fisiopatologia , Fosfocreatina/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Magn Reson Med ; 72(1): 8-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24006208

RESUMO

PURPOSE: The relationship between fat fractions (FFs) determined based on multiple TE, unipolar gradient echo images and (1) H magnetic resonance spectroscopy (MRS) was evaluated using different models for fat-water decomposition, signal-to-noise ratios, and excitation flip angles. METHODS: A combination of single-voxel proton spectroscopy ((1) H-MRS) and gradient echo imaging was used to determine muscle FFs in both normal and dystrophic muscles. In order to cover a large range of FFs, the soleus and vastus lateralis muscles of 22 unaffected control subjects, 16 subjects with collagen VI deficiency (COL6), and 71 subjects with Duchenne muscular dystrophy (DMD) were studied. (1) H-MRS-based FF were corrected for the increased muscle (1) H2 O T1 and T2 values observed in dystrophic muscles. RESULTS: Excellent agreement was found between coregistered FFs derived from gradient echo images fit to a multipeak model with noise bias correction and the relaxation-corrected (1) H-MRS FFs (y = 0.93x + 0.003; R(2) = 0.96) across the full range of FFs. Relaxation-corrected (1) H-MRS FFs and imaging-based FFs were significantly elevated (P < 0.01) in the muscles of COL6 and DMD subjects. CONCLUSION: FFs, T2 , and T1 were all sensitive to muscle involvement in dystrophic muscle. MRI offered an additional advantage over single-voxel spectroscopy in that the tissue heterogeneity in FFs could be readily determined.


Assuntos
Tecido Adiposo/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Distrofia Muscular de Duchenne/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Colágeno Tipo IV/deficiência , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído
16.
J Neurotrauma ; 30(3): 227-35, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22985272

RESUMO

Contusion spinal cord injury (SCI) animal models are used to study loss of muscle function and mass. However, parallels to the human condition typically have been confounded by spontaneous recovery observed within the first few post-injury weeks, partly because of free cage activity. We implemented a new rat model combining SCI with cast immobilization (IMM) to more closely reproduce the unloading conditions experienced by SCI patients. Magnetic resonance imaging was used to monitor hindlimb muscles' cross-sectional area (CSA) after SCI, IMM alone, SCI combined with IMM (SCI+IMM), and in controls (CTR) over a period of 21 days. Soleus muscle tetanic force was measured in situ on day 21, and hindlimb muscles were harvested for histology. IMM alone produced a decrease in triceps surae CSA to 63.9±4.9% of baseline values within 14 days. In SCI, CSA decreased to 75.0±10.5% after 7 days, and recovered to 77.9±10.7% by day 21. SCI+IMM showed the greatest amount of atrophy (56.9±9.9% on day 21). In all groups, muscle mass and soleus tetanic force decreased in parallel, such that specific force was maintained. Extensor digitorum longus (EDL) and soleus fiber size decreased in all groups, particularly in SCI+IMM. We observed a significant degree of asymmetry in muscle CSA in SCI but not IMM. This effect increased between day 7 and 21 in SCI, but also in SCI+IMM, suggesting a minor dependence on muscle activity. SCI+IMM offers a clinically relevant model of SCI to investigate the mechanistic basis for skeletal muscle adaptations after SCI and develop therapeutic approaches.


Assuntos
Moldes Cirúrgicos , Modelos Animais de Doenças , Imobilização/métodos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Feminino , Membro Posterior , Imageamento por Ressonância Magnética , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
17.
J Mater Chem B ; 1(45): 6312-6320, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24634776

RESUMO

A facile synthesis of 3-6 nm, water dispersible, near-infrared (NIR) emitting, quantum dots (QDs) magnetically doped with Fe is presented. Doping of alloyed CdTeS nanocrystals with Fe was achieved in situ using a simple hydrothermal method. The magnetic quantum dots (MQDs) were capped with NAcetyl-Cysteine (NAC) ligands, containing thiol and carboxylic acid functional groups to provide stable aqueous dispersion. The optical and magnetic properties of the Fe doped MQDs were characterized using several techniques. The synthesized MQDs are tuned to emit in the Vis-NIR (530-738 nm) wavelength regime and have high quantum yields (67.5-10%). NIR emitting (738 nm) MQDs having 5.6 atomic% Fe content exhibited saturation magnetization of 85 emu/gm[Fe] at room temperature. Proton transverse relaxivity of the Fe doped MQDs (738 nm) at 4.7 T was determined to be 3.6 mM-1s-1. The functional evaluation of NIR MQDs has been demonstrated using phantom and in vitro studies. These water dispersible, NIR emitting and MR contrast producing Fe doped CdTeS MQDs, in unagglomerated form, have the potential to act as multimodal contrast agents for tracking live cells.

18.
J Gene Med ; 14(9-10): 598-608, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23038159

RESUMO

BACKGROUND: In vivo gene electrotransfer is frequently used in preclinical gene therapy. Many studies have attempted to optimize protocols efficiency at the same time as reducing muscle damage. Most of them have reported histological evidence of muscle degeneration and completion of regeneration within 15 days. The functional consequences have rarely been addressed, which may reflect the lack of appropriate techniques. Yet, it is important to characterize the changes induced by the procedure itself because it may interfere with therapy. We used multiparametric functional (mpf)-nuclear magnetic resonance (NMR) imaging to evaluate mice hindlimb muscle after electrotransfer of an empty plasmid. METHODS: NMR experiments were performed in a 4T Bruker magnet. Arterial spin labeling imaging of perfusion and blood oxygenation level dependent contrast and (31) P spectroscopy of phosphocreatine kinetics and pH were simultaneously acquired from the mice hindlimb during 2 min of electrically stimulated exercise and recovery. RESULTS: After 15 days, hindlimb cross-sectional area decreased by 10% compared to control mice. Specific force-time integral and end-exercise pH were identical in both groups, whereas oxidative capacities increased. Perfusion values doubled, and oxygenation significantly decreased. Histology revealed: (i) degeneration/regeneration; (ii) a decrease in type IIb fibers and an increase in type I and IIa fibers; and (iii) increased capillary density. CONCLUSIONS: In this model, loss in muscle mass was accompanied by important alterations of perfusion and bioenergetics. Fifteen days after electrotransfer, this was correlated with fiber type shift, capillary bed remodeling and degeneration/regeneration. mpf-NMR provides new insights into the functional consequences of standard electrotransfer and represents a powerful tool for optimization and longitudinal assessment of preclinical gene therapy protocols.


Assuntos
Técnicas de Transferência de Genes , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Plasmídeos/administração & dosagem , Animais , Capilares , Membro Posterior , Concentração de Íons de Hidrogênio , Masculino , Mesotelina , Camundongos , Camundongos Endogâmicos , Fibras Musculares Esqueléticas/metabolismo , Oxigênio/sangue , Fosfocreatina/metabolismo , Condicionamento Físico Animal , Fatores de Tempo
19.
Bioconjug Chem ; 23(5): 951-7, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22462809

RESUMO

Oligonucleotide modified gadolinium phosphate nanoparticles have been prepared and their magnetic resonance relaxivity properties measured. Nanoparticles of GdPO4·H2O were synthesized in a water/oil microemulsion using IGEPAL CO-520 as surfactant, resulting in 50 to 100 nm particles that are highly dispersible and stable in water. Using surface modification chemistry previously established for zirconium phosphonate surfaces, the particles are directly modified with 5'-phosphate terminated oligonucleotides, and the specific interaction of the divalent phosphate with Gd(3+) sites at the surface is demonstrated. The ability of the modified nanoparticles to act as MRI contrast agents was determined by performing MR relaxivity measurements at 14.1 T. Solutions of nanopure water, Feridex, and Omniscan (FDA approved contrast agents) in 0.25% agarose were used for comparison and control purposes. MRI data confirm that GdPO4·H2O nanoparticles have relaxivities (r1, r2) comparable to those of commercially available contrast agents. In addition, the data suggest that biofunctionalization of the surface of the nanoparticles does not prevent their function as MRI contrast agents.


Assuntos
Meios de Contraste/química , DNA/química , Gadolínio/química , Nanopartículas/química , Fosfatos/química , Imageamento por Ressonância Magnética , Nanopartículas/ultraestrutura , Oligonucleotídeos/química , Propriedades de Superfície
20.
J Cereb Blood Flow Metab ; 32(5): 771-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22373643

RESUMO

Early diagnosis and follow-up of neurodegenerative diseases are often hampered by the lack of reliable biomarkers. Neuroimaging techniques like magnetic resonance spectroscopy (MRS) offer promising tools to detect biochemical alterations at early stages of degeneration. Intracellular pH, which can be measured noninvasively by (31)P-MRS, has shown variations in several brain diseases. Our purpose has been to evaluate the potential of MRS-measured pH as a relevant biomarker of early degeneration in Huntington's disease (HD). We used a translational approach starting with a preclinical validation of our hypothesis before adapting the method to HD patients. (31)P-MRS-derived cerebral pH was first measured in rodents during chronic intoxication with 3-nitropropionic acid (3NP). A significant pH increase was observed early into the intoxication protocol (pH=7.17±0.02 after 3 days) as compared with preintoxication (pH=7.08±0.03). Furthermore, pH changes correlated with the 3NP-induced inhibition of succinate dehydrogenase and preceded striatum lesions. Using a similar MRS approach implemented on a clinical MRI, we then showed that cerebral pH was significantly higher in HD patients (n=7) than in healthy controls (n=6) (7.05±0.03 versus 7.02±0.01, respectively, P=0.026). Altogether, both preclinical and human data strongly argue in favor of MRS-measured pH being a promising biomarker for diagnosis and follow-up of HD.


Assuntos
Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Concentração de Íons de Hidrogênio , Adulto , Animais , Anti-Hipertensivos/efeitos adversos , Anti-Hipertensivos/farmacologia , Biomarcadores/metabolismo , Feminino , Humanos , Doença de Huntington/induzido quimicamente , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacologia , Propionatos/efeitos adversos , Propionatos/farmacologia , Radiografia , Ratos , Pesquisa Translacional Biomédica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...