Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Inorg Chem ; 55(6): 2755-64, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26931312

RESUMO

The two 16-manganese-containing, Keggin-based 36-tungsto-4-silicates [Mn(III)10Mn(II)6O6(OH)6(PO4)4(A-α-SiW9O34)4](28-) (1) and [Mn(III)4Mn(II)12(OH)12(PO4)4(A-α-SiW9O34)4](28-) (2) have been prepared by reaction of the trilacunary Keggin precursor [A-α-SiW9O34](10-) with either Mn(OOCCH3)3·2H2O (for 1) or MnCl2·4H2O (for 2), in aqueous phosphate solution at pH 9. Polyanions 1 and 2 comprise mixed-valent, cationic {Mn(III)10Mn(II)6O6(OH)6}(24+) and {Mn(III)4Mn(II)12(OH)12}(24+) cores, respectively, encapsulated by four phosphate groups and four {SiW9} units in a tetrahedral fashion. Both polyanions were structurally and compositionally characterized by single-crystal XRD, IR, thermogravimetric analysis, and X-ray absorption spectroscopy. Furthermore, studies were performed probing the magnetic, electrochemical, oxidation catalytic, and Li-ion battery performance of 1 and 2.

2.
Nanoscale ; 8(5): 2832-43, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763792

RESUMO

The properties of ß-NaEuF4/NaGdF4 core-shell nanocrystals have been thoroughly investigated. Nanoparticles with narrow size distribution and an overall diameter of ∼22 nm have been produced with either small ß-NaEuF4 cores (∼3 nm diameter) or large ß-NaEuF4 cores (∼18 nm diameter). The structural properties and core-shell formation are investigated by X-ray diffraction, transmission electron microscopy and electron paramagnetic resonance, respectively. Optical luminescence measurements and X-ray photoelectron spectroscopy are employed to gain information about the optical emission bands and valence states of the rare earth constituents. Magnetic characterization is performed by SQUID and X-ray magnetic circular dichroism measurements at the rare earth M(4,5) edges. The characterization of the core-shell nanoparticles by means of these complementary techniques demonstrates that partial intermixing of core and shell materials takes place, and a significant fraction of europium is present in the divalent state which has significant influence on the magnetic properties. Hence, we obtained a combination of red emitting Eu(3+) ions and paramagnetic Gd(3+) ions, which may be highly valuable for potential future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...