Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(5): 1477-1491, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676700

RESUMO

Escherichia coli is often used as a factory to produce recombinant proteins. In many cases, the recombinant protein needs disulfide bonds to fold and function correctly. These proteins are genetically fused to a signal peptide so that they are secreted to the oxidizing environment of the periplasm (where the enzymes required for disulfide bond formation exist). Currently, it is difficult to determine in vivo whether a recombinant protein is efficiently secreted from the cytoplasm and folded in the periplasm or if there is a bottleneck in one of these steps because cellular capacity has been exceeded. To address this problem, we have developed a biosensor that detects cellular stress caused by (1) inefficient secretion of proteins from the cytoplasm and (2) aggregation of proteins in the periplasm. We demonstrate how the fluorescence fingerprint obtained from the biosensor can be used to identify induction conditions that do not exceed the capacity of the cell and therefore do not cause cellular stress. These induction conditions result in more effective biomass and in some cases higher titers of soluble recombinant proteins.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Proteínas Periplásmicas , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Periplasma/metabolismo , Estresse Fisiológico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
2.
Syst Appl Microbiol ; 44(3): 126203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33857759

RESUMO

In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.


Assuntos
Bradyrhizobium , Fabaceae , Florestas , Pradaria , Filogenia , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Fabaceae/microbiologia , Genes Bacterianos , RNA Ribossômico 16S/genética , Rizosfera , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA