Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1515: 227-242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27797083

RESUMO

In addition to their mitotic and transcriptional functions, cohesin plays critical roles in DNA damage response (DDR) and repair. Specifically, cohesin promotes homologous recombination (HR) repair of DNA double-strand breaks (DSBs), which is conserved from yeast to humans, and is a critical effector of ATM/ATR DDR kinase-mediated checkpoint control in mammalian cells. Optical laser microirradiation has been instrumental in revealing the damage site-specific functions of cohesin and, more recently, uncovering the unique role of cohesin-SA2, one of the two cohesin complexes uniquely present in higher eukaryotes, in DNA repair in human cells. In this review, we briefly describe what we know about cohesin function and regulation in response to DNA damage, and discuss the optimized laser microirradiation conditions used to analyze cohesin responses to DNA damage in vivo.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Biologia Molecular/métodos , Proteínas Nucleares/genética , Animais , Ciclo Celular/efeitos da radiação , Cromátides/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Humanos , Lasers , Reparo de DNA por Recombinação/genética , Reparo de DNA por Recombinação/efeitos da radiação , Saccharomyces cerevisiae/genética , Coesinas
2.
Nucleic Acids Res ; 44(21): e158, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27566152

RESUMO

Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation.


Assuntos
Diferenciação Celular/genética , Mioblastos/citologia , Análise de Sequência de RNA/métodos , Linhagem Celular , Núcleo Celular/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética , Fibras Musculares Esqueléticas/citologia , Mioblastos/fisiologia , Fator Regulador Miogênico 5/genética , RNA Longo não Codificante , Análise de Célula Única/métodos
3.
Hum Mutat ; 35(8): 998-1010, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24838473

RESUMO

Facioscapulohumeral dystrophy (FSHD) is one of the most prevalent muscular dystrophies. The majority of FSHD cases are linked to a decreased copy number of D4Z4 macrosatellite repeats on chromosome 4q (FSHD1). Less than 5% of FSHD cases have no repeat contraction (FSHD2), most of which are associated with mutations of SMCHD1. FSHD is associated with the transcriptional derepression of DUX4 encoded within the D4Z4 repeat, and SMCHD1 contributes to its regulation. We previously found that the loss of heterochromatin mark (i.e., histone H3 lysine 9 tri-methylation (H3K9me3)) at D4Z4 is a hallmark of both FSHD1 and FSHD2. However, whether this loss contributes to DUX4 expression was unknown. Furthermore, additional D4Z4 homologs exist on multiple chromosomes, but they are largely uncharacterized and their relationship to 4q/10q D4Z4 was undetermined. We found that the suppression of H3K9me3 results in displacement of SMCHD1 at D4Z4 and increases DUX4 expression in myoblasts. The DUX4 open reading frame (ORF) is disrupted in D4Z4 homologs and their heterochromatin is unchanged in FSHD. The results indicate the significance of D4Z4 heterochromatin in DUX4 gene regulation and reveal the genetic and epigenetic distinction between 4q/10q D4Z4 and the non-4q/10q homologs, highlighting the special role of the 4q/10q D4Z4 chromatin and the DUX4 ORF in FSHD.


Assuntos
DNA Satélite , Epigênese Genética , Heterocromatina/metabolismo , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Animais , Sequência de Bases , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 4 , Cricetinae , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Fases de Leitura Aberta , Cultura Primária de Células , Homologia de Sequência do Ácido Nucleico
4.
Mol Cell Biol ; 34(4): 685-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24324008

RESUMO

Cohesin is an essential multiprotein complex that mediates sister chromatid cohesion critical for proper segregation of chromosomes during cell division. Cohesin is also involved in DNA double-strand break (DSB) repair. In mammalian cells, cohesin is involved in both DSB repair and the damage checkpoint response, although the relationship between these two functions is unclear. Two cohesins differing by one subunit (SA1 or SA2) are present in somatic cells, but their functional specificities with regard to DNA repair remain enigmatic. We found that cohesin-SA2 is the main complex corecruited with the cohesin-loading factor NIPBL to DNA damage sites in an S/G(2)-phase-specific manner. Replacing the diverged C-terminal region of SA1 with the corresponding region of SA2 confers this activity on SA1. Depletion of SA2 but not SA1 decreased sister chromatid homologous recombination repair and affected repair pathway choice, indicating that DNA repair activity is specifically associated with cohesin recruited to damage sites. In contrast, both cohesin complexes function in the intra-S checkpoint, indicating that cell cycle-specific damage site accumulation is not a prerequisite for cohesin's intra-S checkpoint function. Our findings reveal the unique ways in which cohesin-SA1 and cohesin-SA2 participate in the DNA damage response, coordinately protecting genome integrity in human cells.


Assuntos
Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Coesinas
5.
Biochim Biophys Acta ; 1839(3): 191-202, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24269489

RESUMO

Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transtornos Cromossômicos/metabolismo , Regulação da Expressão Gênica , Animais , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Transtornos Cromossômicos/genética , Humanos , Coesinas
6.
Biochem Cell Biol ; 89(5): 445-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21851156

RESUMO

Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.


Assuntos
Anormalidades Múltiplas/patologia , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Proteínas de Ciclo Celular/farmacologia , Cromatina/química , Proteínas Cromossômicas não Histona/farmacologia , Humanos , Coesinas
7.
PLoS One ; 6(8): e23548, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858164

RESUMO

Condensin I is important for chromosome organization and segregation in mitosis. We previously showed that condensin I also interacts with PARP1 in response to DNA damage and plays a role in single-strand break repair. However, whether condensin I physically associates with DNA damage sites and how PARP1 may contribute to this process were unclear. We found that condensin I is preferentially recruited to DNA damage sites enriched for base damage. This process is dictated by PARP1 through its interaction with the chromosome-targeting domain of the hCAP-D2 subunit of condensin I.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação/genética , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Interferência de RNA
8.
J Biol Chem ; 286(20): 17870-8, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454523

RESUMO

The ß-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica/fisiologia , Elementos Isolantes/fisiologia , Globinas beta/biossíntese , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Humanos , Células K562 , Camundongos , Mutação , Proteínas/genética , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Globinas beta/genética , Coesinas
9.
Curr Opin Cell Biol ; 23(3): 277-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21489773

RESUMO

Technical advances in recent years, such as laser microirradiation and chromatin immunoprecipitation, have led to further understanding of DNA damage responses and repair processes as they happen in vivo and have allowed us to better evaluate the activities of new factors at damage sites. Facilitated by these tools, recent studies identified the unexpected roles of heterochromatin factors in DNA damage recognition and repair, which also involves poly(ADP-ribose) polymerases (PARPs). The results suggest that chromatin at damage sites may be quite structurally dynamic during the repair process, with transient intervals of 'closed' configurations before a more 'open' arrangement that allows the repair machinery to access damaged DNA.


Assuntos
Cromatina/química , Dano ao DNA , Reparo do DNA , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Código das Histonas , Histonas/química , Histonas/metabolismo , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo
10.
Epigenetics ; 5(4): 287-92, 2010 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-20421743

RESUMO

Heterochromatin Protein 1 (HP1) is a transcriptional repressor that directly binds to the methylated lysine 9 residue of histone H3 (H3K9me), which is a hallmark histone modification for transcriptionally silenced heterochromatin. Studies of homologs in different organisms have provided significant insight into the function of HP1 and the role of H3K9me. Initially discovered to be a major constituent of heterochromatin important for gene silencing, HP1 is now known to be a dynamic protein that also functions in transcriptional elongation, centromeric sister chromatid cohesion, telomere maintenance and DNA repair. Furthermore, recent studies have begun to uncover functional differences between HP1 variants and their H3K9me-independent mode of action. As our understanding of HP1 expands, however, conflicting data has also been reported that requires further reconciliation. Here we focus on some of the recent findings and controversies concerning HP1 functions in mammalian cells in comparison to studies in other organisms.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Genoma/genética , Heterocromatina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Homólogo 5 da Proteína Cromobox , Reparo do DNA , Histonas/metabolismo , Humanos , Ligação Proteica , Coesinas
11.
PLoS Genet ; 5(7): e1000559, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593370

RESUMO

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Animais , Cricetinae , Eucromatina/metabolismo , Células HeLa , Heterocromatina/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Modelos Moleculares , Distrofia Muscular Facioescapuloumeral/genética , Reação em Cadeia da Polimerase , Proteínas Repressoras/metabolismo , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Coesinas
12.
J Cell Biol ; 185(4): 573-5, 2009 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-19451270

RESUMO

Heterochromatin protein 1 (HP1) is a conserved factor critical for heterochromatin organization and gene silencing. It is recruited to chromatin by its direct interaction with H3K9me (methylated lysine 9 residue of histone H3), an epigenetic mark for silenced chromatin. Now, Luijsterburg et al. (Luijsterburg, M.S., C. Dinant, H. Lans, J. Stap, E. Wiernasz, S. Lagerwerf, D.O. Warmerdam, M. Lindh, M.C. Brink, J.W. Dobrucki, et al. 2009. J. Cell Biol. 185:577-586) reveal a new H3K9me-independent role for HP1 in the DNA damage response, which is distinct from the one recently reported by Ayoub et al. (Ayoub, N., A.D. Jeyasekharan, J.A. Bernal, and A.R. Venkitaraman. 2008. Nature. 453:682-686).


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Reparo do DNA , Animais , Homólogo 5 da Proteína Cromobox , Histonas , Humanos
13.
Mol Biol Cell ; 20(5): 1289-301, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19116315

RESUMO

Cohesin is an essential protein complex required for sister chromatid cohesion. Cohesin associates with chromosomes and establishes sister chromatid cohesion during interphase. During metaphase, a small amount of cohesin remains at the chromosome-pairing domain, mainly at the centromeres, whereas the majority of cohesin resides in the cytoplasm, where its functions remain unclear. We describe the mitosis-specific recruitment of cohesin to the spindle poles through its association with centrosomes and interaction with nuclear mitotic apparatus protein (NuMA). Overexpression of NuMA enhances cohesin accumulation at spindle poles. Although transient cohesin depletion does not lead to visible impairment of normal spindle formation, recovery from nocodazole-induced spindle disruption was significantly impaired. Importantly, selective blocking of cohesin localization to centromeres, which disrupts centromeric sister chromatid cohesion, had no effect on this spindle reassembly process, clearly separating the roles of cohesin at kinetochores and spindle poles. In vitro, chromosome-independent spindle assembly using mitotic extracts was compromised by cohesin depletion, and it was rescued by addition of cohesin that was isolated from mitotic, but not S phase, cells. The combined results identify a novel spindle-associated role for human cohesin during mitosis, in addition to its function at the centromere/kinetochore regions.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Mitose , Fuso Acromático/metabolismo , Animais , Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Galinhas/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Nocodazol/farmacologia , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Coesinas
14.
Bioessays ; 30(1): 5-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18081005

RESUMO

Cohesin establishes sister-chromatid cohesion during S phase to ensure proper chromosome segregation in mitosis. It also facilitates postreplicative homologous recombination repair of DNA double-strand breaks by promoting local pairing of damaged and intact sister chromatids. In G2 phase, cohesin that is not bound to chromatin is inactivated, but its reactivation can occur in response to DNA damage. Recent papers by Koshland's and Sjögren's groups describe the critical role of the known cohesin cofactor Eco1 (Ctf7) and ATR checkpoint kinase in damage-induced reactivation of cohesin, revealing an intricate mechanism that regulates sister-chromatid pairing to maintain genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA Fúngico/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Quebras de DNA de Cadeia Dupla , DNA Fúngico/fisiologia , Genoma Fúngico , Humanos , Modelos Biológicos , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Troca de Cromátide Irmã/fisiologia , Coesinas
15.
Methods Cell Biol ; 82: 377-407, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17586265

RESUMO

A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.


Assuntos
Dano ao DNA , Reparo do DNA , Lasers , Animais , Cafeína/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Imunoprecipitação da Cromatina , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Células HeLa , Humanos , Imageamento Tridimensional , Radiação Ionizante
16.
Mol Cell ; 21(6): 837-48, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16543152

RESUMO

Condensins are essential protein complexes critical for mitotic chromosome organization. Little is known about the function of condensins during interphase, particularly in mammalian cells. Here we report the interphase-specific interaction between condensin I and the DNA nick-sensor poly(ADP-ribose) polymerase 1 (PARP-1). We show that the association between condensin I, PARP-1, and the base excision repair (BER) factor XRCC1 increases dramatically upon single-strand break damage (SSB) induction. Damage-specific association of condensin I with the BER factors flap endonuclease 1 (FEN-1) and DNA polymerase delta/epsilon was also observed, suggesting that condensin I is recruited to interact with BER factors at damage sites. Consistent with this, DNA damage rapidly stimulates the chromatin association of PARP-1, condensin I, and XRCC1. Furthermore, depletion of condensin in vivo compromises SSB but not double-strand break (DSB) repair. Our results identify a SSB-specific response of condensin I through PARP-1 and demonstrate a role for condensin in SSB repair.


Assuntos
Adenosina Trifosfatases/fisiologia , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/fisiologia , Poli(ADP-Ribose) Polimerases/genética , Adenosina Trifosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Transporte , Proteínas de Ciclo Celular , Linhagem Celular , Galinhas/genética , Cromatina , Proteínas Cromossômicas não Histona , DNA de Cadeia Simples , Células HeLa , Humanos , Interfase , Espectrometria de Massas , Camundongos/genética , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Transfecção , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Proteínas de Xenopus
17.
Chromosome Res ; 10(4): 267-77, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12199140

RESUMO

Proper cohesion of sister chromatids is prerequisite for correct segregation of chromosomes during cell division. The cohesin multiprotein complex, conserved in eukaryotes, is required for sister chromatid cohesion. Human cohesion is composed of a stable heterodimer of the structural maintenance of chromosomes (SMC) family proteins, hSMC1 and hSMC3, and non-SMC components, hRAD21 and SA1 (or SA2). In yeast, cohesion associates with chromosomes from late G1 to metaphase and is required for the establishment and maintenance of both chromosome arm and centromeric cohesion. However, in human cells, the majority of cohesion dissociates from chromosomes before mitosis. Although it was recently shown that a small amount of hRAD21 localizes to the centromeres during metaphase, the presence of other cohesion components at the centromere has not been demonstrated in human cells. Here we report the mitosis-specific localization of hSMC1 to the kinetochores. hSMC1 is targeted to the kinetochore region during prophase concomitant with kinetochore assembly and remains through anaphase. Importantly, hSMC1 is targeted only to the active centromere on dicentric chromosomes. These results suggest that hSMC1 is an integral component of the functional kinetochore structure during mitosis.


Assuntos
Proteínas de Ciclo Celular/análise , Proteínas Cromossômicas não Histona/análise , Cinetocoros/química , Especificidade de Anticorpos , Linfoma de Burkitt , Proteínas de Ciclo Celular/isolamento & purificação , Divisão Celular , Proteínas Cromossômicas não Histona/isolamento & purificação , Imunofluorescência , Células HeLa , Humanos , Cinetocoros/fisiologia , Mitose , Células Tumorais Cultivadas
18.
Mol Cell Biol ; 22(16): 5769-81, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12138188

RESUMO

CNAP1 (hCAP-D2/Eg7) is an essential component of the human condensin complex required for mitotic chromosome condensation. This conserved complex contains a structural maintenance of chromosomes (SMC) family protein heterodimer and three non-SMC subunits. The mechanism underlying condensin targeting to mitotic chromosomes and the role played by the individual condensin components, particularly the non-SMC subunits, are not well understood. We report here characterization of the non-SMC condensin component CNAP1. CNAP1 contains two separate domains required for its stable incorporation into the complex. We found that the carboxyl terminus of CNAP1 possesses a mitotic chromosome-targeting domain that does not require the other condensin components. The same region also contains a functional bipartite nuclear localization signal. A mutant CNAP1 missing this domain, although still incorporated into condensin, was unable to associate with mitotic chromosomes. Successful chromosome targeting of deletion mutants correlated with their ability to directly bind to histones H1 and H3 in vitro. The H3 interaction appears to be mediated through the H3 histone tail, and a subfragment containing the targeting domain was found to interact with histone H3 in vivo. Thus, the CNAP1 C-terminal region defines a novel histone-binding domain that is responsible for targeting CNAP1, and possibly condensin, to mitotic chromosomes.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Humanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona , Cromossomos Humanos/genética , Proteínas de Ligação a DNA/química , Proteínas de Fluorescência Verde , Histonas/metabolismo , Humanos , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...