Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(11): 4075-4085, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487229

RESUMO

The everlasting pursuit of hybrid organic-inorganic lead-free semiconductors has directed the focus towards eco-friendly copper-based systems, perhaps because of the diversity in chemistry, controlling the structure-property relationship. In this work, we report single crystals of a Cu(i) halide-based perovskite-like organic-inorganic hybrid, (TMA)Cu2Br3, (TMA = tetramethylammonium), consisting of unusual one-dimensional inorganic anionic chains of -(Cu2Br3)-, electrostatically stabilized by organic cations, and the Cu(i)-Cu(i) distance of 2.775 Å indicates the possibility of cuprophilic interactions. X-ray photoelectron spectroscopy measurements further confirmed the presence of exclusive Cu(i) in (TMA)Cu2Br3 and electronic structure calculations based on density functional theory suggested a direct bandgap value of 2.50 eV. The crystal device demonstrated an impressive bulk photovoltaic effect due to the emergence of excitonic Cu(i)-Cu(i) interactions, as was clearly visualized in the charge-density plot as well as in the Raman spectroscopic analysis. The single crystals of a silver analogue, (TMA)Ag2Br3, have also been synthesized revealing a Ag(i)-Ag(i) distance of 3.048 Å (signature of an argentophilic interaction). Unlike (TMA)Cu2Br3, where more density of states from Cu compared to Br near the Fermi level was observed, (TMA)Ag2Br3 exhibited the opposite trend, possibly due to variation in the ionic potential influencing the overall bonding scenario.

2.
Inorg Chem ; 63(8): 3675-3681, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38362775

RESUMO

Two-dimensional metal-organic frameworks (2D MOFs) are emerging as a new class of multifunctional materials for diversified applications, although magnetic properties have not been widely explored. The metal ions and organic ligands in some of the 2D MOFs are arranged in the well-known Kagome lattice, leading to geometric spin frustration. Hence, such systems could be the potential candidates to exhibit an exotic quantum spin liquid (QSL) state, as was observed in Cu3(HHTP)2 (HHTP = hexahydroxytriphenylene), with no magnetic transition down to 38 mK. Hereto, we have investigated the spin intertwining in a bimetallic 2D MOF system, M3(HHTP)2 (M = Cu/Zn), arising from the localized (d-electron) and delocalized (π-electron) S = 1/2 spins from the Cu(II) ions and the HHTP radicals, respectively. The origin of the spin frustration (down to 5K) was critically examined by varying the metal composition in bimetallic systems, CuxZn3-x(HHTP)2 (x = 1, 1.5, 2), containing both S = 1/2 and S = 0 spins. Additionally, to gain a deeper understanding, we studied the spin interaction in the pristine Zn3(HHTP)2 system containing only S = 0 Zn(II) ions. In view of the quantitative estimate of the localized and delocalized spins, the d-π spin correlation appears essential in understanding the unusual magnetic and/or other physical properties of such hybrid organic-inorganic 2D crystalline solids.

3.
Chemistry ; 30(4): e202303718, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37955413

RESUMO

On one hand electron or hole doping of quantum spin liquid (QSL) may unlock high-temperature superconductivity and on the other hand it can disrupt the spin liquidity, giving rise to a magnetically ordered ground state. Recently, a 2D MOF, Cu3 (HHTP)2 (HHTP - 2,3,6,7,10,11-hexahydroxytriphenylene), containing Cu(II) S= 1 / 2 ${{ 1/2 }}$ frustrated spins in the Kagome lattice is emerging as a promising QSL candidate. Herein, we present an elegant in situ redox-chemistry strategy of anchoring Cu3 (HHTP)2 crystallites onto diamagnetic reduced graphene oxide (rGO) sheets, resulting in the formation of electron-doped Cu3 (HHTP)2 -rGO composite which exhibited a characteristic semiconducting behavior (5 K to 300 K) with high electrical conductivity of 70 S ⋅ m-1 and a carrier density of ~1.1×1018  cm-3 at 300 K. Remarkably, no magnetic transition in the Cu3 (HHTP)2 -rGO composite was observed down to 1.5 K endorsing the robust spin liquidity of the 2D MOF Cu3 (HHTP)2 . Specific heat capacity measurements led to the estimation of the residual entropy values of 28 % and 34 % of the theoretically expected value for the pristine Cu3 (HHTP)2 and Cu3 (HHTP)2 -rGO composite, establishing the presence of strong quantum fluctuations down to 1.5 K (two times smaller than the value of the exchange interaction J).

4.
Nano Lett ; 23(20): 9326-9332, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843499

RESUMO

Two-dimensional (2D) metal-organic frameworks (MOFs) are usually associated with higher electrical conductivity and charge carrier mobility when compared with 3D MOFs. However, attaining metallic conduction in such systems through synthetic or postsynthetic modifications is extremely challenging. Herein, we present the fabrication of thin films of a 2D MOF, Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), decorated with silver nanoparticles (AgNPs) exhibiting significant conductivity enhancement at room temperature. Variable-temperature electrical transport measurements across the low-temperature (200 K) to high-temperature (373 K) regime evidenced metallic conduction. Interestingly, thin films of a 3D MOF, CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), upon decoration with AgNPs, disclosed a converse trend. The origin of such distinctive observations on AgNPs@Cu3(HHTP)2 and AgNPs@CuTCNQ systems was comprehended by using first-principles density functional theory (DFT) calculations and attributed to an interfacial electronic effect. Our work sheds new light on rationally designing synthetic modifications in thin films of MOFs to tune the electrical transport property.

5.
Inorg Chem ; 62(28): 10887-10891, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37399191

RESUMO

Depositing thin films of pristine metal-organic framework (MOF) on top of a lattice-matched and molecularly doped MOF could provide a new path for generating electronic heterostructures of MOFs with well-defined interfaces. Herein, the Cu3BTC2 (top-layer)/TCNQ@Cu3BTC2 (bottom-layer) system is fabricated by sequential deposition on a functionalized Au substrate, and clear-cut rectification of electrical current across the thin film was observed at room-temperature. Interestingly, the electrical current rectification ratio (RR) was found to be significantly influenced by the effect of temperature (400 K), resulting in a remarkable figure in the domain of MOFs.

6.
Nat Commun ; 14(1): 2857, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208325

RESUMO

Temperature-induced insulator-to-metal transitions (IMTs) where the electrical resistivity can be altered by over tens of orders of magnitude are most often accompanied by structural phase transition in the system. Here, we demonstrate an insulator-to-metal-like transition (IMLT) at 333 K in thin films of a biological metal-organic framework (bio-MOF) which was generated upon an extended coordination of the cystine (dimer of amino acid cysteine) ligand with cupric ion (spin-1/2 system) - without appreciable change in the structure. Bio-MOFs are crystalline porous solids and a subclass of conventional MOFs where physiological functionalities of bio-molecular ligands along with the structural diversity can primarily be utilized for various biomedical applications. MOFs are usually electrical insulators (so as our expectation with bio-MOFs) and can be bestowed with reasonable electrical conductivity by the design. This discovery of electronically driven IMLT opens new opportunities for bio-MOFs, to emerge as strongly correlated reticular materials with thin film device functionalities.

8.
Nat Commun ; 13(1): 7665, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509780

RESUMO

Downsizing materials into hetero-structured thin film configurations is an important avenue to capture various interfacial phenomena. Metallic conduction at the interfaces of insulating transition metal oxides and organic molecules are notable examples, though, it remained elusive in the domain of coordination polymers including metal-organic frameworks (MOFs). MOFs are comprised of metal centers connected to organic linkers with an extended coordination geometry and potential void space. Poor orbitals overlap often makes these crystalline solids electrical insulators. Herein, we have fabricated hetero-structured thin film of a Mott and a band insulating MOFs via layer-by-layer method. Electrical transport measurements across the thin film evidenced an interfacial metallic conduction. The origin of such an unusual observation was understood by the first-principles density functional theory calculations; specifically, Bader charge analysis revealed significant accumulation and percolation of charge across the interface. We anticipate similar interfacial effects in other rationally designed hetero-structured thin films of MOFs.

9.
RSC Adv ; 12(46): 30041-30044, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36329946

RESUMO

Reduced graphene oxide (rGO) has emerged as an excellent interfacial material for improvising the performance of dye-sensitized solar cells (DSSC). Herein, we have applied rGO as interfacial layers between a fluorine doped tin oxide (FTO) coated glass substrate and semiconducting material TiO2 in a photoanode of a DSSC which showed an unusual enhancement in generating a photocurrent in comparison to the control (without rGO layers). An electrochemical impedance spectroscopy (EIS) study was performed to gain the mechanistic insights into such a remarkable enhancement of photoelectric conversion efficiency (PCE) which revealed improved charge transfer and suppressed charge recombination due to high-electrical conductivity and probably more negative work function of our rGO material compared to the bare TiO2 photoanode.

10.
Inorg Chem ; 60(24): 19079-19085, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851108

RESUMO

Two-dimensional metal-organic frameworks (2D MOFs) are the next-generation 2D crystalline solids. Integrating 2D MOFs with conventional 2D materials like graphene is promising for a variety of applications, including energy or gas storage, catalysis, and sensing. However, unraveling the importance of chemical interaction over an additive effect is essential. Here, we present an unconventional chemistry to integrate a Cu-based 2D MOF, Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), with 2D functionalized graphene, reduced graphene oxide (rGO), by an in situ oxidation-reduction reaction. Combined Raman spectroscopy, electron spin resonance (ESR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) measurements along with structural analysis evidenced the chemical interaction between Cu-HHTP and rGO, which was subsequently assigned to be the key for the manifestation of significantly modified physical properties. Of particular mention is the conversion of an n-type crystalline solid to a p-type crystalline solid upon the chemical integration of Cu-HHTP with rGO, as revealed by Seebeck coefficient. More importantly, the thermoelectric power factor exhibited an increasing trend with increasing temperature, unlike an opposite trend observed due to an additive effect. The results anticipate the ability of a redox reaction to chemically integrate other 2D MOFs with rGO and show how an in situ synthesis can trigger chemical interaction between two distinctive 2D materials.

11.
J Phys Chem Lett ; 11(24): 10548-10551, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33295776

RESUMO

Wet-chemical fabrication of a crystalline Ag-TCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) thin film on non-Ag substrate is challenging whereby the chemistry was powered by photon energy and/or electrical energy. We report for the first time, direct chemical growth of a Ag-TCNQ thin film on a functionalized Au substrate by employing the layer-by-layer (LbL) approach at ambient reaction conditions. Various Ag(I) salt precursors previously realized to be unsuitable for the fabrication of Ag-TCNQ thin films on non-Ag substrates ultimately gave rise to dense and uniform thin films of Ag-TCNQ. The crucial knob regulating the direct formation of the thin films of Ag-TCNQ was identified to be the pH of the respective Ag(I) solutions.

12.
J Phys Chem Lett ; 11(15): 6242-6248, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32659093

RESUMO

In this work we report fabrication of high-quality AB- and BA-type heterostructured thin films of cubic Cu(II) (A-type) and tetragonal Cu(I) (B-type) coordination polymers (CPs) on the functionalized Au substrate by the layer-by-layer method. Successful growth of Cu(I)-CP on top of Cu(II)-CP was assigned to be due to the interfacial reduction reaction (IRR). Notably, electrical transport measurements across AB- and BA-type heterostructured thin films revealed rectification of current in opposite directions. We have attributed such an interestingly new observation to the formation of a well-defined interface of Cu(II)-CP and Cu(I)-CP resembling a p-n junction-a hitherto unreported phenomenon that is anticipated to open enormous opportunities for the heterostructured thin films of CPs, likewise celebrated interfaces of oxide heterostructures.

13.
J Mater Chem B ; 8(19): 4259-4266, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32285907

RESUMO

The presence of the same proteins at different sub-cellular locations with completely different functions adds to the complexity of signalling pathways in cancer. Subsequently, it becomes indispensable to understand the diverse critical roles of these proteins based on their spatial distribution for the development of improved cancer therapeutics. To address this, in this work, we report the development of endoplasmic reticulum (ER) and mitochondria targeted nanoscale particles to spatially impair anti-apoptotic Bcl-2 protein in these organelles in HeLa cervical cancer cells. Confocal microscopy and gel electrophoresis confirmed that these nanoparticles selectively home into ER and mitochondria and inhibited Bcl-2 localized there. Interestingly, Bcl-2 inhibition in ER induced ER stress leading to autophagy, whereas inhibition of Bcl-2 in mitochondria leads to mitochondrial damage and programmed cell death (apoptosis) in HeLa cells. These nanoscale platforms can be further explored as chemical biology tools to decipher the location-function relationship of proteins towards next generation cancer therapeutics.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Indóis/farmacologia , Lipídeos/química , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirróis/farmacologia , Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Indóis/química , Mitocôndrias/metabolismo , Estrutura Molecular , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirróis/química , Propriedades de Superfície
14.
Inorg Chem ; 59(9): 6214-6219, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302106

RESUMO

Study on magnetism in two-dimensional (2D) spin-lattices is advancing rapidly. In this work, phase-pure botallackite (Bo) (Cu2(OH)3Br), a quasi-2D S = 1/2 anisotropic triangular spin-lattice is stabilized over 2D reduced graphene oxide (rGO) nanosheets via simple oxidation-reduction reaction chemistry. In comparison to polycrystalline Bo, such an anchoring resulted in the oriented growth of Bo crystallites in the Bo-rGO system. The Bo-rGO nanocomposite was found to be magnetically active with a Néel transition at ∼8.9 K, crossing over to possible XY anisotropy at ∼5 K-as revealed by complementary dc and ac susceptibility measurements-an unprecedented observation in the field assigned to an interfacial effect. This work demonstrates the potential usage of nonmagnetic 2D functionalized graphene to significantly modulate the magnetic properties of 2D spin-lattices.

15.
J Phys Chem Lett ; 11(9): 3211-3217, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251590

RESUMO

We demonstrate the first successful synthesis of reasonably monodisperse and single-crystalline gold nanoearbuds (Au NEBs) using a binary surfactant mixture of cetyltrimethylammonium chloride (CTAC) and benzyldimethylhexadecylammonium chloride (BDAC) in seed-mediated growth method. We have focused on the key chemical parameters behind the formation and growth of Au NEBs to result in tunable dimensions (length, 37-77 nm; width, 4-6 nm; aspect ratio, 7-19), as a consequence of which the longitudinal surface plasmon resonance (LSPR) peak could be tuned beyond 1200 nm. The achievement of LSPR beyond 1200 nm while maintaining the dimension well below 100 nm is a challenging accomplishment in the realm of one-dimensional (1D) Au nanostructures. This earbud-like morphology additionally exhibits three plasmonic peaks, rather uncommon for 1D nanostructures, which were analyzed theoretically based on the finite element method. The new resonance peak of the Au NEB was assigned as an additional longitudinal mode intensified by the bulbous ends as well as the high aspect ratio, thereby providing conclusive evidence that it is indeed a new morphology.

16.
Nanoscale Adv ; 2(10): 4887-4894, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132889

RESUMO

The endoplasmic reticulum is one of the vital organelles primarily involved in protein synthesis, folding, and transport and lipid biosynthesis. However, in cancer cells its functions are dysregulated leading to ER stress. ER stress is now found to be closely associated with hallmarks of cancer and has subsequently emerged as an alluring target in cancer therapy. However, specific targeting of the ER in a cancer cell milieu remains a challenge. To address this, in this report we have engineered ER-targeted self-assembled 3D spherical graphene oxide nanoparticles (ER-GO-NPs) encompassing dual ER stress inducers, doxorubicin and cisplatin. DLS, FESEM and AFM techniques revealed that the nanoparticles were spherical in shape with a sub 200 nm diameter. Confocal microscopy confirmed the specific homing of these ER-GO-NPs into the subcellular ER within 3 h. A combination of gel electrophoresis, confocal microscopy and flow cytometry studies revealed that these ER-GO-NPs induced ER stress mediated apoptosis in HeLa cells. Interestingly, the nanoparticles also activated autophagy which was inhibited through the cocktail treatment with ER-GO-NPs and chloroquine (CQ). At the same time these ER-GO-NPs were found to be efficient in prompting ER stress associated apoptosis in breast, lung and drug resistant triple negative breast cancer cell lines as well. We envision that these ER specific self-assembled graphene oxide nanoparticles can serve as a platform to exploit ER stress and its associated unfolded protein response (UPR) as a target resulting in promising therapeutic outcomes in cancer therapy.

17.
Angew Chem Int Ed Engl ; 59(6): 2215-2219, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31642177

RESUMO

In this work, we have synthesized nanocomposites made up of a metal-organic framework (MOF) and conducting polymers by polymerization of specialty monomers such as pyrrole (Py) and 3,4-ethylenedioxythiophene (EDOT) in the voids of a stable and biporous Zr-based MOF (UiO-66). FTIR and Raman data confirmed the presence of polypyrrole (PPy) and poly3,4-ethylenedioxythiophene (PEDOT) in UiO-66-PPy and UiO-66-PEDOT nanocomposites, respectively, and PXRD data revealed successful retention of the structure of the MOF. HRTEM images showed successful incorporation of polymer fibers inside the voids of the framework. Owing to the intrinsic biporosity of UiO-66, polymer chains were observed to selectively occupy only one of the voids. This resulted in a remarkable enhancement (million-fold) of the electrical conductivity while the nanocomposites retain 60-70 % of the porosity of the original MOF. These semiconducting yet significantly porous MOF nanocomposite systems exhibited ultralow thermal conductivity. Enhanced electrical conductivity with lowered thermal conductivity could qualify such MOF nanocomposites for thermoelectric applications.

18.
Langmuir ; 35(29): 9456-9463, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31262184

RESUMO

Concave cuboid (CCB) nanostructure is a member of the high-index facet (HIF) nanocrystals (NCs) family, geometrically derived from regular cuboid-excavation of each face. CCB NCs hold some additional characteristics such as surface cavity and sharp edges and corners as compared to its convex counterpart that makes it relatively more active in applications like electrochemical catalysis, surface enhanced Raman spectroscopy (SERS), and plasmonics. To date, there are only few reports available on the synthesis of CCB Au NCs where Br- containing surfactants have been used as a shape directing and stabilizing agent. However, none of them led to decent yield and size tunability. Herein, we report a robust seed mediated growth strategy where cetyltrimethylammonium chloride (CTAC) and tannic acid (TA) have been used as shape-directing/stabilizing and mild reducing agents, respectively. Our method not only allows the high yield fabrication of CCB Au NCs with uniform shape and size but also precise control over dimensions and degree of surface concavity. Moreover, the investigation of growth mechanism revealed that the evolution of CCB Au NCs from cylindrical nanorods (NRs) take place via arrow-headed nanorods and truncated CCB nanostructures. Furthermore, it has been observed that the presence of excess of Cl- is indeed playing a decisive role despite the headgroup of counter cationic part of surfactant. We anticipate that our findings may pave the path to design new synthetic strategies and understand the evolution of new nanostructures.

19.
Langmuir ; 35(30): 9647-9659, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31282684

RESUMO

Chemical reactions involving oxidation and reduction processes at interfaces may vary from those in conventional liquid-phase or solid-phase reactions and could influence the overall outcome. This article primarily features a study on metal-ligand coordination at the solid-liquid interface. Of particular mention is the spontaneous reduction of Cu(II) to Cu(I) at a solid-liquid interface without the need of any extraneous reducing agent, unlike in the liquid-phase reaction whereby no reduction of Cu(II) to Cu(I) took place. As a consequence of the interfacial reduction reaction (IRR), thin films of Cu-TCNQ (tetracyanoquinodimethane) and Cu-HCF (hexacyanoferrate) were successfully deposited onto a thiol-functionalized Au substrate via a layer-by-layer (LbL) method. IRR is anticipated to be useful in generating new functional and stimuli-responsive materials, which are otherwise difficult to achieve via conventional liquid-phase reactions.

20.
J Phys Chem Lett ; 10(11): 2663-2668, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31050902

RESUMO

An elegant platform to explore frustrated magnetism is the kagome spin lattice. In this work, clinoatacamite, a naturally occurring S = 1/2 kagome-like antiferromagnetic insulator, is synthesized in water at ambient pressure for the first time from a cuprous chloride (CuCl) precursor whereby Cu(I) was spontaneously oxidized to Cu(II) in the form of clinoatacamite [Cu2(OH)3Cl] with a simultaneous reduction of graphene oxide (GO) to reduced graphene oxide (rGO) in one pot. A stable nanocomposite of phase-pure clinoatacamite nanocrystals embedded in the rGO matrix was isolated. The clinoatacamite-rGO nanocomposite was determined to be magnetically active with a markedly enhanced coercive field of ∼2500 Oe at 5 K as well as electronically active with a conductivity value of ∼200 S·m-1 at 300 K. Our results illustrate an avenue of combining exotic magnetic and electronic lattices without impeding their individual characteristics and synergistically generating a new class of magnetic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...