Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0275638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36197893

RESUMO

Understanding drivers of biodiversity patterns is essential to evaluate the potential impact of deep-sea mining on ecosystems resilience. While the South West Pacific forms an independent biogeographic province for hydrothermal vent fauna, different degrees of connectivity among basins were previously reported for a variety of species depending on their ability to disperse. In this study, we compared phylogeographic patterns of several vent gastropods across South West Pacific back-arc basins and the newly-discovered La Scala site on the Woodlark Ridge by analysing their genetic divergence using a barcoding approach. We focused on six genera of vent gastropods widely distributed in the region: Lepetodrilus, Symmetromphalus, Lamellomphalus, Shinkailepas, Desbruyeresia and Provanna. A wide-range sampling was conducted at different vent fields across the Futuna Volcanic Arc, the Manus, Woodlark, North Fiji, and Lau Basins, during the CHUBACARC cruise in 2019. The Cox1-based genetic structure of geographic populations was examined for each taxon to delineate putative cryptic species and assess potential barriers or contact zones between basins. Results showed contrasted phylogeographic patterns among species, even between closely related species. While some species are widely distributed across basins (i.e. Shinkailepas tollmanni, Desbruyeresia melanioides and Lamellomphalus) without evidence of strong barriers to gene flow, others are restricted to one (i.e. Shinkailepas tufari complex of cryptic species, Desbruyeresia cancellata and D. costata). Other species showed intermediate patterns of isolation with different lineages separating the Manus Basin from the Lau/North Fiji Basins (i.e. Lepetodrilus schrolli, Provanna and Symmetromphalus spp.). Individuals from the Woodlark Basin were either endemic to this area (though possibly representing intermediate OTUs between the Manus Basin and the other eastern basins populations) or, coming into contact from these basins, highlighting the stepping-stone role of the Woodlark Basin in the dispersal of the South West Pacific vent fauna. Results are discussed according to the dispersal ability of species and the geological history of the South West Pacific.


Assuntos
Gastrópodes , Fontes Hidrotermais , Animais , Biodiversidade , Ecossistema , Gastrópodes/genética , Humanos , Oceano Pacífico , Filogenia , Filogeografia
2.
Genes (Basel) ; 13(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741747

RESUMO

Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.


Assuntos
Fontes Hidrotermais , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Caramujos
3.
Genes (Basel) ; 11(12)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322137

RESUMO

Temperature is one of the most important range-limiting factors for many seaweeds. Driven by the recent climatic changes, rapid northward shifts of species' distribution ranges can potentially modify the phylogeographic signature of Last Glacial Maximum. We explored this question in detail in the cold-tolerant kelp species Saccharina latissima, using microsatellites and double digest restriction site-associated DNA sequencing ( ddRAD-seq) derived single nucleotide polymorphisms (SNPs) to analyze the genetic diversity and structure in 11 sites spanning the entire European Atlantic latitudinal range of this species. In addition, we checked for statistical correlation between genetic marker allele frequencies and three environmental proxies (sea surface temperature, salinity, and water turbidity). Our findings revealed that genetic diversity was significantly higher for the northernmost locality (Spitsbergen) compared to the southern ones (Northern Iberia), which we discuss in light of the current state of knowledge on phylogeography of S. latissima and the potential influence of the recent climatic changes on the population structure of this species. Seven SNPs and 12 microsatellite alleles were found to be significantly associated with at least one of the three environmental variables. We speculate on the putative adaptive functions of the genes associated with the outlier markers and the importance of these markers for successful conservation and aquaculture strategies for S. latissima in this age of rapid global change.


Assuntos
Alelos , Kelp/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Oceano Atlântico , Filogeografia
4.
J Appl Phycol ; 30(5): 2901-2911, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416259

RESUMO

Morphological changes-such as dark spots, twisted stipes and deformed blades-have been observed in wild and cultivated Saccharina latissima. The putative cause for the disease symptoms is the filamentous endophytic brown alga Laminarionema elsbetiae, which is known to invade stipes and fronds of its hosts. Little is known about this interaction and its occurrence in the field, although former studies indicated high endophyte prevalence in kelp populations. Previous epidemiological studies on kelp endophytes were mainly based on the examination of microscopic sections, followed by time-consuming isolation and cultivation steps in order to identify the endophyte and a reliable method to quantify endophyte infections was missing. As a novel approach, we established and validated a qPCR assay for relative quantification of the endophyte L. elsbetiae within its host S. latissima, which allows to examine both, the prevalence of endophytic algae and the severity of infections. The assay was shown to be highly specific and suitable to reliably detect small amounts of endophyte DNA in the host. Using this method, we detected very high endophyte prevalence in the investigated kelp populations, up to 100% in young S. latissima sporophytes in Brittany during spring. Furthermore, our results suggest that Saccharina sporophytes are infected early in their life and that seasonality and environmental factors have a significant impact on infection rates. In the future, this approach could also be applied to study other host-endophyte pairs using specific primers.

5.
Evol Appl ; 11(9): 1582-1597, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344629

RESUMO

Ports and farms are well-known primary introduction hot spots for marine non-indigenous species (NIS). The extent to which these anthropogenic habitats are sustainable sources of propagules and influence the evolution of NIS in natural habitats was examined in the edible seaweed Undaria pinnatifida, native to Asia and introduced to Europe in the 1970s. Following its deliberate introduction 40 years ago along the French coast of the English Channel, this kelp is now found in three contrasting habitat types: farms, marinas and natural rocky reefs. In the light of the continuous spread of this NIS, it is imperative to better understand the processes behind its sustainable establishment in the wild. In addition, developing effective management plans to curtail the spread of U. pinnatifida requires determining how the three types of populations interact with one another. In addition to an analysis using microsatellite markers, we developed, for the first time in a kelp, a ddRAD-sequencing technique to genotype 738 individuals sampled in 11 rocky reefs, 12 marinas, and two farms located along ca. 1,000 km of coastline. As expected, the RAD-seq panel showed more power than the microsatellite panel for identifying fine-grained patterns. However, both panels demonstrated habitat-specific properties of the study populations. In particular, farms displayed very low genetic diversity and no inbreeding conversely to populations in marinas and natural rocky reefs. In addition, strong, but chaotic regional genetic structure, was revealed, consistent with human-mediated dispersal (e.g., leisure boating). We also uncovered a tight relationship between populations in rocky reefs and those in nearby marinas, but not with nearby farms, suggesting spillover from marinas into the wild. At last, a temporal survey spanning 20 generations showed that wild populations are now self-sustaining, albeit there was no evidence for local adaptation to any of the three habitats. These findings highlight that limiting the spread of U. pinnatifida requires efficient management policies that also target marinas.

6.
BMC Biol ; 15(1): 25, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356154

RESUMO

BACKGROUND: Contamination is a well-known but often neglected problem in molecular biology. Here, we investigated the prevalence of cross-contamination among 446 samples from 116 distinct species of animals, which were processed in the same laboratory and subjected to subcontracted transcriptome sequencing. RESULTS: Using cytochrome oxidase 1 as a barcode, we identified a minimum of 782 events of between-species contamination, with approximately 80% of our samples being affected. An analysis of laboratory metadata revealed a strong effect of the sequencing center: nearly all the detected events of between-species contamination involved species that were sent the same day to the same company. We introduce new methods to address the amount of within-species, between-individual contamination, and to correct for this problem when calling genotypes from base read counts. CONCLUSIONS: We report evidence for pervasive within-species contamination in this data set, and show that classical population genomic statistics, such as synonymous diversity, the ratio of non-synonymous to synonymous diversity, inbreeding coefficient FIT, and Tajima's D, are sensitive to this problem to various extents. Control analyses suggest that our published results are probably robust to the problem of contamination. Recommendations on how to prevent or avoid contamination in large-scale population genomics/molecular ecology are provided based on this analysis.


Assuntos
Contaminação por DNA , Genética Populacional , Genômica , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metagenômica , Polimorfismo de Nucleotídeo Único/genética , Probabilidade , Especificidade da Espécie
7.
Genome Biol Evol ; 8(10): 3108-3119, 2016 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-27590089

RESUMO

The fixation probability of a recessive beneficial mutation is increased on the X or Z chromosome, relative to autosomes, because recessive alleles carried by X or Z are exposed to selection in the heterogametic sex. This leads to an increased dN/dS ratio on sex chromosomes relative to autosomes, a pattern called the "fast-X" or "fast-Z" effect. Besides positive selection, the strength of genetic drift and the efficacy of purifying selection, which affect the rate of molecular evolution, might differ between sex chromosomes and autosomes. Disentangling the complex effects of these distinct forces requires the genome-wide analysis of polymorphism, divergence and gene expression data in a variety of taxa. Here we study the influence of hemizygosity of the Z chromosome in Maniola jurtina and Pyronia tithonus, two species of butterflies (Lepidoptera, Nymphalidae, Satyrinae). Using transcriptome data, we compare the strength of positive and negative selection between Z and autosomes accounting for sex-specific gene expression. We show that M. jurtina and P. tithonus do not experience a faster, but rather a slightly slower evolutionary rate on the Z than on autosomes. Our analysis failed to detect a significant difference in adaptive evolutionary rate between Z and autosomes, but comparison of male-biased, unbiased and female-biased Z-linked genes revealed an increased efficacy of purifying selection against recessive deleterious mutations in female-biased Z-linked genes. This probably contributes to the lack of fast-Z evolution of satyrines. We suggest that the effect of hemizygosity on the fate of recessive deleterious mutations should be taken into account when interpreting patterns of molecular evolution in sex chromosomes vs. autosomes.


Assuntos
Borboletas/genética , Cromossomos de Insetos/genética , Evolução Molecular , Hemizigoto , Seleção Genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Masculino , Polimorfismo Genético
8.
PLoS One ; 10(12): e0145596, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26698123

RESUMO

Termites are eusocial insects related to cockroaches that feed on lignocellulose. These insects are key species in ecosystems since they recycle a large amount of nutrients but also are pests, exerting major economic impacts. Knowledge on the molecular pathways underlying reproduction, caste differentiation or lignocellulose digestion would largely benefit from additional transcriptomic data. This study focused on transcriptomes of secondary reproductive females (nymphoid neotenics). Thirteen transcriptomes were used: 10 of Reticulitermes flavipes and R. grassei sequenced from a previous study, and two transcriptomes of R. lucifugus sequenced for the present study. After transcriptome assembly and read mapping, we examined interspecific variations of genes expressed by termites or gut microorganisms. A total of 18,323 orthologous gene clusters were detected. Functional annotation and taxonomic assignment were performed on a total of 41,287 predicted contigs in the three termite species. Between the termite species studied, functional categories of genes were comparable. Gene ontology (GO) terms analysis allowed the discovery of 9 cellulases and a total of 79 contigs potentially involved in 11 enzymatic activities used in wood metabolism. Altogether, results of this study illustrate the strong potential for the use of comparative interspecific transcriptomes, representing a complete resource for future studies including differentially expressed genes between castes or SNP analysis for population genetics.


Assuntos
Proteínas de Insetos/genética , Isópteros/genética , Reprodução/genética , Transcriptoma , Animais , Biologia Computacional , Feminino , Genética Populacional , Isópteros/classificação , Isópteros/crescimento & desenvolvimento
9.
Mol Biol Evol ; 32(9): 2403-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980005

RESUMO

Because mating systems affect population genetics and ecology, they are expected to impact the molecular evolution of species. Self-fertilizing species experience reduced effective population size, recombination rates, and heterozygosity, which in turn should decrease the efficacy of natural selection, both adaptive and purifying, and the strength of meiotic drive processes such as GC-biased gene conversion. The empirical evidence is only partly congruent with these predictions, depending on the analyzed species, some, but not all, of the expected effects have been observed. One possible reason is that self-fertilization is an evolutionary dead-end, so that most current selfers recently evolved self-fertilization, and their genome has not yet been strongly impacted by selfing. Here, we investigate the molecular evolution of two groups of freshwater snails in which mating systems have likely been stable for several millions of years. Analyzing coding sequence polymorphism, divergence, and expression levels, we report a strongly reduced genetic diversity, decreased efficacy of purifying selection, slower rate of adaptive evolution, and weakened codon usage bias/GC-biased gene conversion in the selfer Galba compared with the outcrosser Physa, in full agreement with theoretical expectations. Our results demonstrate that self-fertilization, when effective in the long run, is a major driver of population genomic and molecular evolutionary processes. Despite the genomic effects of selfing, Galba truncatula seems to escape the demographic consequences of the genetic load. We suggest that the particular ecology of the species may buffer the negative consequences of selfing, shedding new light on the dead-end hypothesis.


Assuntos
Evolução Molecular , Caramujos/genética , Animais , Códon , Feminino , Deriva Genética , Variação Genética , Masculino , Filogenia , Polimorfismo Genético , Reprodução/genética , Seleção Genética , Autofertilização/genética
10.
Genome Biol Evol ; 7(1): 240-50, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25527834

RESUMO

Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.


Assuntos
Composição de Bases/genética , Evolução Molecular , Conversão Gênica , Répteis/genética , Animais , Códon , Éxons , Genoma , Genômica , Mamíferos , Fases de Leitura Aberta/genética , Filogenia , Recombinação Genética
11.
PLoS Genet ; 9(4): e1003457, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593039

RESUMO

In animals, the population genomic literature is dominated by two taxa, namely mammals and drosophilids, in which fully sequenced, well-annotated genomes have been available for years. Data from other metazoan phyla are scarce, probably because the vast majority of living species still lack a closely related reference genome. Here we achieve de novo, reference-free population genomic analysis from wild samples in five non-model animal species, based on next-generation sequencing transcriptome data. We introduce a pipe-line for cDNA assembly, read mapping, SNP/genotype calling, and data cleaning, with specific focus on the issue of hidden paralogy detection. In two species for which a reference genome is available, similar results were obtained whether the reference was used or not, demonstrating the robustness of our de novo inferences. The population genomic profile of a hare, a turtle, an oyster, a tunicate, and a termite were found to be intermediate between those of human and Drosophila, indicating that the discordant genomic diversity patterns that have been reported between these two species do not reflect a generalized vertebrate versus invertebrate gap. The genomic average diversity was generally higher in invertebrates than in vertebrates (with the notable exception of termite), in agreement with the notion that population size tends to be larger in the former than in the latter. The non-synonymous to synonymous ratio, however, did not differ significantly between vertebrates and invertebrates, even though it was negatively correlated with genetic diversity within each of the two groups. This study opens promising perspective regarding genome-wide population analyses of non-model organisms and the influence of population size on non-synonymous versus synonymous diversity.


Assuntos
Drosophila/genética , Genoma Humano , Metagenômica , Transcriptoma/genética , Animais , Sequência de Bases , Genótipo , Lebres/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Invertebrados/genética , Isópteros/genética , Ostreidae/genética , Polimorfismo de Nucleotídeo Único , Tartarugas/genética , Urocordados/genética , Vertebrados/genética
12.
Mol Ecol ; 22(4): 1003-18, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23286428

RESUMO

Selection processes are believed to be an important evolutionary driver behind the successful establishment of nonindigenous species, for instance through adaptation for invasiveness (e.g. dispersal mechanisms and reproductive allocation). However, evidence supporting this assumption is still scarce. Genome scans have often identified loci with atypical patterns of genetic differentiation (i.e. outliers) indicative of selection processes. Using microsatellite- and AFLP-based genome scans, we looked for evidence of selection following the introduction of the mollusc Crepidula fornicata. Native to the northwestern Atlantic, this gastropod has become an emblematic invader since its introduction during the 19th and 20th centuries in the northeastern Atlantic and northeastern Pacific. We examined 683 individuals from seven native and 15 introduced populations spanning the latitudinal introduction and native ranges of the species. Our results confirmed the previously documented high genetic diversity in native and introduced populations with little genetic structure between the two ranges, a pattern typical of marine invaders. Analysing 344 loci, no outliers were detected between the introduced and native populations or in the introduced range. The genomic sampling may have been insufficient to reveal selection especially if it acts on traits determined by a few genes. Eight outliers were, however, identified within the native range, underlining a genetic singularity congruent with a well-known biogeographical break along the Florida. Our results call into question the relevance of AFLP genome scans in detecting adaptation on the timescale of biological invasions: genome scans often reveal long-term adaptation involving numerous genes throughout the genome but seem less effective in detecting recent adaptation from pre-existing variation on polygenic traits. This study advocates other methods to detect selection effects during biological invasions-for example on phenotypic traits, although genome scans may remain useful for elucidating introduction histories.


Assuntos
Gastrópodes/genética , Variação Genética , Genética Populacional , Polimorfismo Genético , Adaptação Fisiológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Técnicas de Genotipagem , Espécies Introduzidas , Repetições de Microssatélites , Seleção Genética
13.
Mar Genomics ; 4(4): 291-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22118642

RESUMO

In silico mining of an expressed sequence tags (ESTs) library was found to be efficient at isolating simple sequence repeats (SSRs) loci in the non-indigenous marine mollusc Crepidula fornicata. Twelve SSR loci were developed for routine genotyping. Cross-species amplification to 8 other Crepidula species showed that the 12 loci are highly specific for C. fornicata. Mendelian inheritance was shown for 11 of them (1 being monomorphic in the analyzed offspring array). The genetic diversity for 88 adults was found to be variable across the 12 loci (2-40 alleles, expected heterozygosity between 0.023 and 0.898) with a high overall exclusion probability of 0.99. The degree of genetic polymorphism found here is similar to that shown for 7 anonymous SSRs previously developed and here used on the same samples. This set of 12 specific loci is relevant to perform reliable population and relatedness analyses in Crepidula fornicata.


Assuntos
Etiquetas de Sequências Expressas , Gastrópodes/genética , Biblioteca Gênica , Variação Genética , Espécies Introduzidas , Repetições de Microssatélites/genética , Polimorfismo Genético , Animais , Primers do DNA/genética , França , Genótipo , Heterozigoto , Reação em Cadeia da Polimerase Multiplex , Técnicas de Amplificação de Ácido Nucleico , Especificidade da Espécie
14.
Mol Ecol Resour ; 11(4): 650-61, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21481219

RESUMO

Next Generation Sequencing technologies (NGS) are rapidly invading many evolutionary and ecological fields, such as phylogenomics, molecular evolution, population genomics and molecular ecology. Among the potential targets of NGS is transcriptome sequencing, a fast and relatively cheap way to generate massive amounts of coding sequence data, offering promising perspectives for the analysis of molecular diversity in the wild. A number of molecular ecology research groups therefore may switch from DNA-based to RNA-based typing in the near future. Sample preparation from natural populations, however, requires specific care and protocols when RNA is the target. Furthermore, NGS sequencing of transcriptome requires high amount of good-quality RNA. Here we present the results of RNA extraction experiments from various samples of 39 animal species caught in the wild. We compared tissue preparation and storage conditions, evaluated and improved standard RNA extraction protocols, and achieved RNA yield and quality suitable for NGS in all cases. We derive general guidelines for the production of ready-to-sequence RNA in nonmodel animals sampled in the field.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Animais , Animais Selvagens , RNA/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...