Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
Int J Hyg Environ Health ; 253: 114241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37611533

RESUMO

With the advent of molecular biology diagnostics, different quantitative PCR assays have been developed for use in Source Tracking (ST), with none of them showing 100% specificity and sensitivity. Most studies have been conducted at a regional level and mainly in fecal slurry rather than in animal wastewater. The use of a single molecular assay has most often proven to fall short in discriminating with precision the sources of fecal contamination. This work is a multicenter European ST study to compare bacterial and mitochondrial molecular assays and was set to evaluate the efficiency of nine previously described qPCR assays targeting human-, cow/ruminant-, pig-, and poultry-associated fecal contamination. The study was conducted in five European countries with seven fecal indicators and nine ST assays being evaluated in a total of 77 samples. Animal fecal slurry samples and human and non-human wastewater samples were analyzed. Fecal indicators measured by culture and qPCR were generally ubiquitous in the samples. The ST qPCR markers performed at high levels in terms of quantitative sensitivity and specificity demonstrating large geographical application. Sensitivity varied between 73% (PLBif) and 100% for the majority of the tested markers. On the other hand, specificity ranged from 53% (CWMit) and 97% (BacR). Animal-associated ST qPCR markers were generally detected in concentrations greater than those found for the respective human-associated qPCR markers, with mean concentration for the Bacteroides qPCR markers varying between 8.74 and 7.22 log10 GC/10 mL for the pig and human markers, respectively. Bacteroides spp. and mitochondrial DNA qPCR markers generally presented higher Spearman's rank coefficient in the pooled fecal samples tested, particularly the human fecal markers with a coefficient of 0.79. The evaluation of the performance of Bacteroides spp., mitochondrial DNA and Bifidobacterium spp. ST qPCR markers support advanced pollution monitoring of impaired aquatic environments, aiming to elaborate strategies for target-oriented water quality management.


Assuntos
DNA Mitocondrial , Águas Residuárias , Bovinos , Feminino , Animais , Suínos , Bacteroides/genética , Bioensaio , Qualidade da Água
3.
Nat Commun ; 14(1): 4295, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463935

RESUMO

Crassvirales (crAss-like phages) are an abundant group of human gut-specific bacteriophages discovered in silico. The use of crAss-like phages as human fecal indicators is proposed but the isolation of only seven cultured strains of crAss-like phages to date has greatly hindered their study. Here, we report the isolation and genetic characterization of 25 new crAss-like phages (termed crAssBcn) infecting Bacteroides intestinalis, belonging to the order Crassvirales, genus Kehishuvirus and, based on their genomic variability, classified into six species. CrAssBcn phage genomes are similar to ΦCrAss001 but show genomic and aminoacidic differences when compared to other crAss-like phages of the same family. CrAssBcn phages are detected in fecal metagenomes around the world at a higher frequency than ΦCrAss001. This study increases the known crAss-like phage isolates and their abundance and heterogeneity open the question of what member of the Crassvirales group should be selected as human fecal marker.


Assuntos
Bacteriófagos , Humanos , Heterogeneidade Genética , Genômica , Fezes , Metagenoma/genética , Genoma Viral/genética , Filogenia
4.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37286726

RESUMO

The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.


Assuntos
Ácidos Nucleicos , Poluição da Água , Poluição da Água/análise , Qualidade da Água , Bancos de Espécimes Biológicos , Águas Residuárias , Monitoramento Ambiental/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , Microbiologia da Água , Fezes
5.
Environ Pollut ; 319: 120983, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596379

RESUMO

Plastics have been proposed as vectors of bacteria as they act as a substrate for biofilms. In this study, we evaluated the abundance of faecal and marine bacteria and antibiotic resistance genes (ARGs) from biofilms adhered to marine plastics. Floating plastics and plastics from sediments were collected in coastal areas impacted by human faecal pollution in the northwestern Mediterranean Sea. Culture and/or molecular methods were used to quantify faecal indicators (E. coli, Enterococci and crAssphage), and the ARGs sulI, tetW and blaTEM and the 16S rRNA were detected by qPCR assays. Pseudomonas and Vibrio species and heterotrophic marine bacteria were also analysed via culture-based methods. Results showed that, plastic particles covered by bacterial biofilms, primarily consisted of marine bacteria including Vibrio spp. Some floating plastics had a low concentration of viable E. coli and Enterococci (42% and 67% of the plastics respectively). Considering the median area of the plastics, we detected an average of 68 cfu E. coli per item, while a higher concentration of E. coli was detected on individual plastic items, when compared with 100 ml of the surrounding water. Using qPCR, we quantified higher values of faecal indicators which included inactive and dead microorganisms, detecting up to 2.6 × 102 gc mm-2. The ARGs were detected in 67-88% of the floating plastics and in 29-57% of the sediment plastics with a concentration of up to 6.7 × 102 gc mm-2. Furthermore, enrichment of these genes was observed in biofilms compared with the surrounding water. These results show that floating plastics act as a conduit for both the attachment and transport of faecal microorganisms. In contrast, low presence of faecal indicators was detected in plastic from seafloor sediments. Therefore, although in low concentrations, faecal bacteria, and potential pathogens, were identified in marine plastics, further suggesting plastics act as a reservoir of pathogens and ARGs.


Assuntos
Escherichia coli , Fezes , Vibrio , Humanos , Antibacterianos , Biofilmes , Resistência Microbiana a Medicamentos/genética , Enterococcus/genética , Escherichia coli/genética , Genes Bacterianos , Plásticos , RNA Ribossômico 16S , Vibrio/genética , Água , Fezes/microbiologia
6.
J Environ Manage ; 301: 113802, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34638039

RESUMO

The ability to detect human fecal pollution in water is of great importance when assessing the associated health risks. Many microbial source tracking (MST) markers have been proposed to determine the origin of fecal pollution, but their application remains challenging. A range of factors, not yet sufficiently analyzed, may affect MST markers in the environment, such as dilution and inactivation processes. In this work, a statistical framework based on Monte Carlo simulations and non-linear regression was used to develop a classification procedure for use in MST studies. The predictive model tested uses only two parameters: somatic coliphages (SOMCPH), as an index of general fecal pollution, and human host-specific bacteriophages that infect Bacteroides thetaiotaomicron strain GA17 (GA17PH). Taking into account bacteriophage dilution and differential inactivation, the threshold concentration of SOMCPH was calculated to be around 500 PFU/100 mL for a limit of detection of 10 PFU/100 mL. However, this threshold can be lowered by increasing the analyzed volume sample, which in turn lowers the limit of detection. The resulting model is sufficiently accurate for application in practical cases involving MST and could be easily used with markers other than those tested here.


Assuntos
Bacteriófagos , Bacteroides thetaiotaomicron , Colífagos , Monitoramento Ambiental , Fezes , Humanos , Água , Microbiologia da Água , Poluição da Água/análise
7.
FEMS Microbes ; 3: xtac009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37332509

RESUMO

The raw sewage that flows through sewage systems contains a complex microbial community whose main source is the human gut microbiome, with bacteriophages being as abundant as bacteria or even more so. Phages that infect common strains of the human gut bacteriome and transient bacterial pathogens have been isolated in raw sewage, as have other phages corresponding to non-sewage inputs. Although human gut phages do not seem to replicate during their transit through the sewers, they predominate at the entrance of wastewater treatment plants, inside which the dominant populations of bacteria and phages undergo a swift change. The sheer abundance of phages in the sewage virome prompts several questions, some of which are addressed in this review. There is growing concern about their potential role in the horizontal transfer of genes, including those related with bacterial pathogenicity and antibiotic resistance. On the other hand, some phages that infect human gut bacteria are being used as indicators of fecal/viral water pollution and as source tracking markers and have been introduced in water quality legislation. Other potential applications of enteric phages to control bacterial pathogens in sewage or undesirable bacteria that impede the efficacy of wastewater treatments, including biofilm formation on membranes, are still being researched.

8.
Front Microbiol ; 12: 619495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012424

RESUMO

The detection of fecal viral pathogens in water is hampered by their great variety and complex analysis. As traditional bacterial indicators are poor viral indicators, there is a need for alternative methods, such as the use of somatic coliphages, which have been included in water safety regulations in recent years. Some researchers have also recommended the use of reference viral pathogens such as noroviruses or other enteric viruses to improve the prediction of fecal viral pollution of human origin. In this work, phages previously tested in microbial source tracking studies were compared with norovirus and adenovirus for their suitability as indicators of human fecal viruses. The phages, namely those infecting human-associated Bacteroides thetaiotaomicron strain GA17 (GA17PH) and porcine-associated Bacteroides strain PG76 (PGPH), and the human-associated crAssphage marker (crAssPH), were evaluated in sewage samples and fecal mixtures obtained from different animals in five European countries, along with norovirus GI + GII (NoV) and human adenovirus (HAdV). GA17PH had an overall sensitivity of ≥83% and the highest specificity (>88%) for human pollution source detection. crAssPH showed the highest sensitivity (100%) and specificity (100%) in northern European countries but a much lower specificity in Spain and Portugal (10 and 30%, respectively), being detected in animal wastewater samples with a high concentration of fecal indicators. The correlations between GA17PH, crAssPH, or the sum of both (BACPH) and HAdV or NoV were higher than between the two human viruses, indicating that bacteriophages are feasible indicators of human viral pathogens of fecal origin and constitute a promising, easy to use and affordable alternative to human viruses for routine water safety monitoring.

9.
Water Res ; 188: 116537, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126005

RESUMO

Nitrate (NO3-) pollution adversely impacts surface and groundwater quality. In recent decades, many countries have implemented measures to control and reduce anthropogenic nitrate pollution in water resources. However, to effectively implement mitigation measures at the origin of pollution,the source of nitrate must first be identified. The stable nitrogen and oxygen isotopes of NO3- (ẟ15N and ẟ18O) have been widely used to identify NO3- sources in water, and their combination with other stable isotopes such as boron (ẟ11B) has further improved nitrate source identification. However, the use of these datasets has been limited due to their overlapping isotopic ranges, mixing between sources, and/or isotopic fractionation related to physicochemical processes. To overcome these limitations, we combined a multi-isotopic analysis with fecal indicator bacteria (FIB) and microbial source tracking (MST) techniques to improve nitrate origin identification. We applied this novel approach on 149 groundwater and 39 surface water samples distributed across Catalonia (NE Spain). A further 18 wastewater treatment plant (WWTP) effluents were also isotopically and biologically characterized. The groundwater and surface water results confirm that isotopes and MST analyses were complementary and provided more reliable information on the source of nitrate contamination. The isotope and MST data agreed or partially agreed in most of the samples evaluated (79 %). This approach was especially useful for nitrate pollution tracing in surface water but was also effective in groundwater samples influenced by organic nitrate pollution. Furthermore, the findings from the WWTP effluents suggest that the use of literature values to define the isotopic ranges of anthropogenic sources can constrain interpretations. We therefore recommend that local sources be isotopically characterized for accurate interpretations. For instance, the detection of MST inferred animal influence in some WWTP effluents, but the ẟ11B values were higher than those reported in the literature for wastewater. The results of this study have been used by local water authorities to review uncertain cases and identify new vulnerable zones in Catalonia according to the European Nitrate Directive (91/676/CEE).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Espanha , Poluentes Químicos da Água/análise
10.
Microorganisms ; 8(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847015

RESUMO

Anthropogenic activities are a key factor in the development of antibiotic resistance in bacteria, a growing problem worldwide. Nevertheless, antibiotics and resistances were being generated by bacterial communities long before their discovery by humankind, and might occur in areas without human influence. Bacteriophages are known to play a relevant role in the dissemination of antibiotic resistance genes (ARGs) in aquatic environments. In this study, five ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, sul1 and tetW) were monitored in phage particles isolated from seawater of two different locations: (i) the Mediterranean coast, subjected to high anthropogenic pressure, and (ii) the Antarctic coast, where the anthropogenic impact is low. Although found in lower quantities, ARG-containing phage particles were more prevalent among the Antarctic than the Mediterranean seawater samples and Antarctic bacterial communities were confirmed as their source. In the Mediterranean area, ARG-containing phages from anthropogenic fecal pollution might allow ARG transmission through the food chain. ARGs were detected in phage particles isolated from fish (Mediterranean, Atlantic, farmed, and frozen), the most abundant being ß-lactamases. Some of these particles were infectious in cultures of the fecal bacteria Escherichia coli. By serving as ARG reservoirs in marine environments, including those with low human activity, such as the Antarctic, phages could contribute to ARG transmission between bacterial communities.

11.
Environ Pollut ; 266(Pt 1): 115254, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32721842

RESUMO

Water quality monitoring is essential to safeguard human and environmental health. The advent of next-generation sequencing techniques in recent years, which allow a more in-depth study of environmental microbial communities in the environment, could broaden the perspective of water quality monitoring to include impact of faecal pollution bacteria on ecosystem. In this study, 16 S rRNA amplicon sequencing was used to evaluate the impact of wastewater treatment plant (WWTP) effluent on autochthonous microbial communities of a temporary Mediterranean stream characterized by high flow seasonality (from 0.02 m3/s in winter to 0.006 m3/s in summer). Seven sampling campaigns were performed under different temperatures and streamflow conditions (winter and summer). Water samples were collected upstream (Upper) of the WWTP, the secondary effluent (EF) discharge and 75 m (P75) and 1000 m (P1000) downstream of the WWTP. A total of 5,593,724 sequences were obtained, giving rise to 20,650 amplicon sequence variants (ASV), which were further analysed and classified into phylum, class, family and genus. Each sample presented different distribution and abundance of taxa. Although taxon distribution and abundance differed in each sample, the microbial community structure of P75 resembled that of EF samples, and Upper and P1000 samples mostly clustered together. Alpha diversity showed the highest values for Upper and P1000 samples and presented seasonal differences, being higher in winter conditions of high streamflow and low temperature. Our results suggest the microbial ecology re-establishment, since autochthonous bacterial communities were able to recover from the impact of the WWTP effluent in 1 km. Alpha diversity results indicates a possible influence of environmental factors on the bacterial community structure. This study shows the potential of next-generation sequencing techniques as useful tools in water quality monitoring and management within the climate change scenario.


Assuntos
Microbiota , Esgotos , Bactérias/genética , Humanos , RNA Ribossômico 16S , Águas Residuárias
12.
Sci Total Environ ; 736: 139573, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32474276

RESUMO

Fecal pollution of water bodies poses a serious threat for public health and ecosystems. Microbial source tracking (MST) is used to track the source of this pollution facilitating better management of pollution at the source. In this study we tested 12 MST markers to track human, ruminant, sheep, horse, pig and gull pollution to assess their usefulness as an effective management tool of water quality. First, the potential of the selected markers to track the source was evaluated using fresh fecal samples. Subsequently, we evaluated their performance in a catchment with different impacts, considering land use and environmental conditions. All MST markers showed high sensitivity and specificity, although none achieved 100% for both. Although some of the MST markers were detected in hosts other than the intended ones, their abundance in the target group was always several orders of magnitude higher than in the non-target hosts, demonstrating their suitability to distinguish between sources of pollution. The MST analysis matched the land use in the watershed allowing an accurate assessment of the main sources of pollution, in this case mainly human and ruminant pollution. Correlating environmental parameters including temperature and rainfall with MST markers provided insight into the dynamics of the pollution in the catchment. The levels of the human marker showed a significant negative correlation with rainfall in human polluted areas suggesting a dilution of the pollution, whereas at agricultural areas the ruminant marker increased with rainfall. There were no seasonal differences in the levels of human marker, indicating human pollution as a constant pressure throughout the year, whereas the levels of the ruminant marker was influenced by the seasons, being more abundant in summer and autumn. MST analysis integrated with land use and environmental data can improve the management of fecal polluted areas and set up best practice.


Assuntos
Ecossistema , Rios , Animais , Monitoramento Ambiental , Fezes , Cavalos , Humanos , Ovinos , Suínos , Microbiologia da Água , Poluição da Água/análise , Qualidade da Água
13.
Water Res ; 171: 115392, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31865126

RESUMO

The last decades have seen the development of several source tracking (ST) markers to determine the source of pollution in water, but none of them show 100% specificity and sensitivity. Thus, a combination of several markers might provide a more accurate classification. In this study Ichnaea® software was improved to generate predictive models, taking into account ST marker decay rates and dilution factors to reflect the complexity of ecosystems. A total of 106 samples from 4 sources were collected in 5 European regions and 30 faecal indicators and ST markers were evaluated, including E. coli, enterococci, clostridia, bifidobacteria, somatic coliphages, host-specific bacteria, human viruses, host mitochondrial DNA, host-specific bacteriophages and artificial sweeteners. Models based on linear discriminant analysis (LDA) able to distinguish between human and non-human faecal pollution and identify faecal pollution of several origins were developed and tested with 36 additional laboratory-made samples. Almost all the ST markers showed the potential to correctly target their host in the 5 areas, although some were equivalent and redundant. The LDA-based models developed with fresh faecal samples were able to differentiate between human and non-human pollution with 98.1% accuracy in leave-one-out cross-validation (LOOCV) when using 2 molecular human ST markers (HF183 and HMBif), whereas 3 variables resulted in 100% correct classification. With 5 variables the model correctly classified all the fresh faecal samples from 4 different sources. Ichnaea® is a machine-learning software developed to improve the classification of the faecal pollution source in water, including in complex samples. In this project the models were developed using samples from a broad geographical area, but they can be tailored to determine the source of faecal pollution for any user.


Assuntos
Microbiologia da Água , Água , Ecossistema , Monitoramento Ambiental , Escherichia coli , Fezes , Humanos , Poluição da Água
14.
Microb Biotechnol ; 10(6): 1775-1780, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925595

RESUMO

In recent decades, considerable effort has been devoted to finding microbial source-tracking (MST) markers that are suitable to assess the health risks of faecally polluted waters, with no universal marker reported so far. In this study, the abundance and prevalence of a crAssphage-derived DNA marker in wastewaters of human and animal origins were studied by a new qPCR assay with the ultimate aim of assessing its potential as an MST marker. crAssphage showed up to 106 GC/ml in the sewage samples of human origin, in both the total DNA and the viral DNA fraction. In wastewaters containing animal faecal remains, 39% of the samples were negative for the presence of the crAssphage sequence, while those showing positive results (41% of the samples) were at least 1 log10 unit lower than the samples of human origin. Noteworthy, the log10 values of the ratio (R) crAssphage (GC/ml)/Escherichia coli (CFU/ml) varied significantly depending on the human or animal origin (R > 1.5 for human samples and R < -1.5 for animal wastewater samples. This study opens the way for further research to explore if different specific animal variants of crAssphage exist and whether other zones of the crAssphage genome are better suited to source discrimination.


Assuntos
Bacteriófagos/isolamento & purificação , Fezes/virologia , Esgotos/virologia , Águas Residuárias/virologia , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Humanos , Esgotos/microbiologia , Águas Residuárias/microbiologia , Poluição da Água
15.
J Environ Qual ; 46(4): 760-766, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783792

RESUMO

Microbial source tracking (MST) has been extensively used to detect the sources of fecal pollution in water. The inclusion of MST in water management strategies improves the ecological status of the ecosystem and human and animal health under interdisciplinary analysis in all aspects of health care for humans, animals, and the environment (One Health approach). In this study, the performance of MST markers targeting host-specific Bacteroidales (HF183 and Rum-2-Bac) and species (HMBif and CWBif) were evaluated in raw sewage collected from human, ruminant, swine, and poultry sources in Tunisia, Cyprus, Ireland, and Spain. In addition, the ratio between somatic coliphages and bacteriophages infecting GA17 (SOMCPH/GA17PH) was measured in Tunisia and Spain. The obtained results showed variability of the bacterial markers between the four countries, suggesting that their usefulness could be affected by several conditions (dietary habits, agricultural practices, and climatic conditions) that differ between countries. The Rum-2-Bac marker stood out as a valid MST tool, particularly in Ireland, whereas CWBif was the best option in Tunisia, Spain, and Cyprus. The human-specific HMBif marker showed good sensitivity and specificity in Tunisia, Spain, and Ireland, whereas HF183 showed a low specificity. However, HF183 was suggested as a good human marker in Ireland and Cyprus because of its higher concentration than HMBif. Regarding viral markers, the ratio of SOMCPH/GA17PH showed a clear discrimination between human and nonhuman samples. The combined use of molecular bacterial markers and the ratio of SOMCPH/GA17PH may improve the success of MST.


Assuntos
Monitoramento Ambiental , Microbiologia da Água , Poluição da Água , Animais , Bacteroidetes , Fezes , Humanos , Espanha
16.
Curr Opin Microbiol ; 38: 95-105, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28600959

RESUMO

Efforts to identify and characterize strategies for horizontal gene transfer (HGT) in prokaryotes could have overlooked some mechanisms that do not entirely fit in with the canonical ones most often described (conjugation of plasmids, phage transduction and transformation). The difficulty in distinguishing the different HGT strategies could have contributed to underestimate their real extent. Here we review non classical HGT strategies: some that require mobile genetic elements (MGEs) and others independent of MGE. Among those strategies that require MGEs, there is a range of newly reported, hybrid and intermediate MGEs mobilizing only their own DNA, others that mobilize preferentially bacterial DNA, or both. Considering HGT strategies independent of MGE, a few are even not restricted to DNA transfer, but can also mobilize other molecules. This review considers those HGT strategies that are less commonly dealt with in the literature. The real impact of these elements could, in some conditions, be more relevant than previously thought.


Assuntos
Bactérias/genética , Transferência Genética Horizontal , Células Procarióticas , Sequências Repetitivas Dispersas
17.
Environ Microbiol ; 18(3): 957-69, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26626855

RESUMO

Lysogeny by temperate phages provides novel functions for bacteria and shelter for phages. However, under conditions that activate the phage lytic cycle, the benefit of lysogeny becomes a paradox that poses a threat for bacterial population survival. Using Escherichia coli lysogens for Shiga toxin (Stx) phages as model, we demonstrate how lysogenic bacterial populations circumvent extinction after phage induction. A fraction of cells maintains lysogeny, allowing population survival, whereas the other fraction of cells lyse, increasing Stx production and spreading Stx phages. The uninduced cells were still lysogenic for the Stx phage and equally able to induce phages as the original cells, suggesting heterogeneity of the E. coli lysogenic population. The bacterial population can modulate phage induction under stress conditions by the stress regulator RpoS. Cells overexpressing RpoS reduce Stx phage induction and compete with and survive better than cells with baseline RpoS levels. Our observations suggest that population heterogeneity in phage induction could be widespread among other bacterial genera and we propose this is a mechanism positively selected to prevent the extinction of the lysogenic population that can be modulated by environmental conditions.


Assuntos
Proteínas de Bactérias/biossíntese , Bacteriófagos/genética , Escherichia coli/virologia , Lisogenia/genética , Fator sigma/biossíntese , Proteínas de Bactérias/genética , Bacteriófagos/metabolismo , Dados de Sequência Molecular , Toxina Shiga/genética , Toxina Shiga II/genética , Fator sigma/genética
18.
Water Res ; 47(18): 6897-908, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23992621

RESUMO

A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman(®), HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman(®) was found to be the most effective marker of human fecal contamination in this California-based study.


Assuntos
Bactérias Anaeróbias/classificação , DNA Bacteriano/análise , Monitoramento Ambiental/métodos , Fezes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água , Poluição da Água/análise , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , California , Humanos , Limite de Detecção , Águas Residuárias/microbiologia
19.
Water Res ; 47(18): 6883-96, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916157

RESUMO

Here we report results from a multi-laboratory (n = 11) evaluation of four different PCR methods targeting the 16S rRNA gene of Catellicoccus marimammalium originally developed to detect gull fecal contamination in coastal environments. The methods included a conventional end-point PCR method, a SYBR(®) Green qPCR method, and two TaqMan(®) qPCR methods. Different techniques for data normalization and analysis were tested. Data analysis methods had a pronounced impact on assay sensitivity and specificity calculations. Across-laboratory standardization of metrics including the lower limit of quantification (LLOQ), target detected but not quantifiable (DNQ), and target not detected (ND) significantly improved results compared to results submitted by individual laboratories prior to definition standardization. The unit of measure used for data normalization also had a pronounced effect on measured assay performance. Data normalization to DNA mass improved quantitative method performance as compared to enterococcus normalization. The MST methods tested here were originally designed for gulls but were found in this study to also detect feces from other birds, particularly feces composited from pigeons. Sequencing efforts showed that some pigeon feces from California contained sequences similar to C. marimammalium found in gull feces. These data suggest that the prevalence, geographic scope, and ecology of C. marimammalium in host birds other than gulls require further investigation. This study represents an important first step in the multi-laboratory assessment of these methods and highlights the need to broaden and standardize additional evaluations, including environmentally relevant target concentrations in ambient waters from diverse geographic regions.


Assuntos
Charadriiformes/microbiologia , Enterococcaceae/classificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água , Poluição da Água/análise , Animais , Sequência de Bases , California , Columbidae/microbiologia , DNA Bacteriano/classificação , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Enterococcaceae/metabolismo , Fezes/microbiologia , Dados de Sequência Molecular , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade
20.
Syst Appl Microbiol ; 35(6): 374-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22824582

RESUMO

Three Gram-positive, anaerobic, pleomorphic strains (PG10(T), PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10(T) (CECT 8111(T), DSM 25737(T)) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C(16:0) and C(18:1)ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γmeso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10(T), PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively.


Assuntos
Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Esterco/microbiologia , Animais , Bifidobacterium/química , Bifidobacterium/genética , DNA Bacteriano/genética , Genes Bacterianos/genética , Lipídeos/análise , Lipídeos/química , Fenótipo , RNA Ribossômico 16S/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...