Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 47, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639596

RESUMO

Previous attempts to quantify tree abundance at global scale have largely neglected the role of local competition in modulating the influence of climate and soils on tree density. Here, we evaluated whether mean tree size in the world's natural forests alters the effect of global productivity on tree density. In doing so, we gathered a vast set of forest inventories including >3000 sampling plots from 23 well-conserved areas worldwide to encompass (as much as possible) the main forest biomes on Earth. We evidence that latitudinal productivity patterns of tree density become evident as large trees become dominant. Global estimates of tree abundance should, therefore, consider dependencies of latitudinal sources of variability on local biotic influences to avoid underestimating the number of trees on Earth and to properly evaluate the functional and social consequences.


Assuntos
Florestas , Árvores , Ecossistema , Clima , Mudança Climática
2.
Nat Commun ; 11(1): 5635, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159062

RESUMO

More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study. In the other forest regions, any benefit from having more species is just as likely (9 regions) or even less likely (6 regions) than the effects of having more individuals. We demonstrate that diversity effects prevail in the most productive environments, and abundance effects become dominant towards the most limiting conditions. These findings can contribute to refining cost-effective mitigation strategies based on fostering carbon storage through increased tree diversity. Specifically, in less productive environments, mitigation measures should promote abundance of locally adapted and stress tolerant tree species instead of increasing species richness.


Assuntos
Clima , Ecossistema , Árvores/crescimento & desenvolvimento , Biodiversidade , Carbono/metabolismo , Florestas , Árvores/classificação , Árvores/metabolismo
3.
Am J Bot ; 106(12): 1536-1544, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31758552

RESUMO

PREMISE: Fire scars on trees are created by excessive heat from a fire that kills the vascular cambium. Although, fires are one of the most important forest disturbances in Patagonia, the effects of fire on tree physiology and wood anatomy are still unknown. In this study, we hypothesized that abnormal functioning of the cambium after a fire will induce anatomical changes in the wood. We also assumed that these anatomical changes would affect xylem safety transport. METHODS: We quantified wood anatomical traits in Nothofagus pumilio, the dominant subalpine tree species of Patagonia, using two approaches: time and distance. In the first, anatomical changes in tree rings were compared before, during, and after fire occurrence. In the second, the spatial extent of these changes was evaluated with respect to the wound by measuring anatomical traits in sampling bands in two directions (0° and 45°) with respect to the onset of healing. RESULTS: Reductions in lumen diameter and vessel number were the most conspicuous changes associated with fire damage and observed in the fire ring and subsequent post-fire rings. In addition, the fire ring had more rays than in control rings. In terms of distance, anatomical changes were only restricted to short distances from the wound. CONCLUSIONS: Post-fire changes in wood anatomical traits were confined close to the wound margins. These changes might be associated with a defense strategy related to the compartmentalization of the wound and safety of water transport.


Assuntos
Câmbio , Incêndios , Fagales , Madeira , Xilema
4.
Nat Commun ; 8(1): 2222, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263398

RESUMO

The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes of variability responsible for dry spells over the European continent. The NAO therefore holds a great potential to evaluate the role, as carbon sinks, of water-limited forests under climate change. However, uncertainties related to inconsistent responses of long-term forest productivity to NAO have so far hampered firm conclusions on its impacts. We hypothesize that, in part, such inconsistencies might have their origin in periodical sea surface temperature anomalies in the Atlantic Ocean (i.e., Atlantic Multidecadal Oscillation, AMO). Here we show strong empirical evidence in support of this hypothesis using 120 years of periodical inventory data from Iberian pine forests. Our results point to AMO+ NAO+ and AMO-NAO- phases as being critical for forest productivity, likely due to decreased winter water balance and abnormally low winter temperatures, respectively. Our findings could be essential for the evaluation of ecosystem functioning vulnerabilities associated with increased climatic anomalies under unprecedented warming conditions in the Mediterranean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...