Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 112: 104217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906300

RESUMO

Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.


Assuntos
Brettanomyces , Vinho , Microbiologia de Alimentos , Aço Inoxidável/análise , Brettanomyces/metabolismo , Vinho/análise , Saccharomyces cerevisiae
2.
Food Chem ; 411: 135454, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681024

RESUMO

Three major compounds, 2-acetyl-1-pyrroline (APY), 2-acetyltetrahydropyridine (ATHP) and 2-ethyltetrahydropyridine (ETHP), have been identified as responsible for the mousy off-flavor in wines, although to date quantification data reported in the literature are limited. A simple method for simultaneous quantitation, by SBSE-GC-MS, of these N-heterocyclic compounds was developed. Both previously reported tautomers of ATHP, 2-acetyl-1,4,5,6-tetrahydropyridine and 2-acetyl-3,4,5,6-tetrahydropyridine were identified. The limits of detection and quantification of the method were determined in white, rosé and red wines and are lower than previously published concentrations in spoiled wine. ETHP was detected in almost all wines produced with limited use of SO2. ATHP was detected in almost all wines suspected of mousiness whereas APY was only detected in few cases. This method will provide a support for further studies aimed at understanding the phenomena that influence the occurrence of mousy off-flavor and the oenological parameters that modulate its expression.


Assuntos
Vinho , Animais , Camundongos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Vinho/análise
3.
Mol Ecol ; 32(10): 2374-2395, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318747

RESUMO

Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g., winemaking, bioethanol production) or as a beneficial microorganism (e.g., production of specific beers, kombucha). In addition to its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the coexistence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g., nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.


Assuntos
Brettanomyces , Vinho , Humanos , Saccharomyces cerevisiae , Vinho/análise , Brettanomyces/genética , Brettanomyces/metabolismo , Genômica , Fermentação
4.
Front Microbiol ; 13: 1031064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439844

RESUMO

Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines.

5.
Int J Food Microbiol ; 381: 109907, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36063684

RESUMO

Chitosan is an active highly charged polysaccharide that has initially been developed in oenology to eliminate the spoilage yeast B. bruxellensis. However, different forms of chitosan exist, some complying with EU regulation for their use in wines, others not. Moreover, with the trend in oenology of limiting SO2, more and more questions arise as to the impact of chitosan on other microorganisms of the grape and wine environment. We investigated the antimicrobial efficiency of chitosan on a large oenological microbial collection, englobing technological as well as spoilage microorganisms. Results show that most species are affected at least transiently. Furthermore, a high variability prevails within most species and sensitive, intermediate and tolerant strains can be observed. This study also highlights different efficiencies depending on the wine parameters or the winemaking stage, giving important indications on which winemaking issues can be solved using chitosan. Chitosan treatment does not seem to be appropriate to limit the musts microbial pressure and Saccharomyces cerevisiae cannot be stopped during alcoholic fermentation, especially in sweet wines. Likewise, acetic acid bacteria are poorly impacted by chitosan. After alcoholic fermentation, chitosan can efficiently limit non-Saccharomyces yeast and lactic acid bacteria but special care should be given as to whether malolactic fermentation is wanted or not. Indeed, O. oeni can be severely impacted by chitosan, even months after treatment. Finally, this study highlights the crucial importance of the chitosan type used in its efficiency towards microbial stabilization. While a high molecular weight chitosan has limited antimicrobial properties, a chitosan with a much lower one, complying with EU and OIV regulation and specifications for its use in wine is much more efficient.


Assuntos
Anti-Infecciosos , Quitosana , Vitis , Vinho , Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Fermentação , Saccharomyces cerevisiae , Vitis/microbiologia , Vinho/microbiologia
6.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184168

RESUMO

Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.

7.
Viruses ; 12(11)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213034

RESUMO

To provide insights into phage-host interactions during winemaking, we assessed whether phenolic compounds modulate the phage predation of Oenococcus oeni. Centrifugal partition chromatography was used to fractionate the phenolic compounds of a model red wine. The ability of lytic oenophage OE33PA to kill its host was reduced in the presence of two collected fractions in which we identified five compounds. Three, namely, quercetin, myricetin and p-coumaric acid, significantly reduced the phage predation of O. oeni when provided as individual pure molecules, as also did other structurally related compounds such as cinnamic acid. Their presence was correlated with a reduced adsorption rate of phage OE33PA on its host. Strikingly, none of the identified compounds affected the killing activity of the distantly related lytic phage Vinitor162. OE33PA and Vinitor162 were shown to exhibit different entry mechanisms to penetrate into bacterial cells. We propose that ligand-receptor interactions that mediate phage adsorption to the cell surface are diverse in O. oeni and are subject to differential interference by phenolic compounds. Their presence did not induce any modifications in the cell surface as visualized by TEM. Interestingly, docking analyses suggest that quercetin and cinnamic acid may interact with the tail of OE33PA and compete with host recognition.


Assuntos
Bacteriófagos/efeitos dos fármacos , Oenococcus/virologia , Fenóis/farmacologia , Vinho/análise , Ácidos Cumáricos/química , Flavonoides/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Simulação de Acoplamento Molecular , Oenococcus/efeitos dos fármacos , Fenóis/química
8.
Front Microbiol ; 11: 571067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013803

RESUMO

Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of B. bruxellensis was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.

9.
Food Microbiol ; 92: 103577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950161

RESUMO

Wine is generally considered as hostile medium in which spoilage microbes have to manage with many abiotic factors among which low nutrient content. Wines elaborated in 8 wineries were sampled during the first summer of aging over two consecutive vintages, and analysed for carbohydrate composition. This revealed the systematic presence of many carbohydrates including those useful for the spoilage yeast Brettanomyces bruxellensis. However, during the first summer of aging, the changes in wine carbohydrate composition were low and it was difficult to assess how much carbohydrate composition contributed to wine spoilage by B. bruxellensis. Subsequent laboratory experiments in inoculated wines showed that the sugars preferentially consumed in wine by the spoilage yeast are d-glucose, d-fructose, and trehalose, whatever the yeast strain considered. The addition of these sugars to red wines accelerates the yeast growth and the volatile phenols formation. Although probably not the only promoting factor, the presence of high amounts of metabolisable sugars thus really increases the risk of "brett" spoilage.


Assuntos
Brettanomyces/isolamento & purificação , Carboidratos/química , Contaminação de Alimentos/análise , Vinho/microbiologia , Brettanomyces/genética , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Metabolismo dos Carboidratos , Fermentação , Microbiologia de Alimentos , Vinho/análise
10.
Food Microbiol ; 87: 103379, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948620

RESUMO

Brettanomyces bruxellensis is a yeast species found in many fermented matrices. A high level of genetic diversity prevails in this species and was recently connected with tolerance to sulfur dioxide, the main preservative used in wine. We therefore examine other phenotypes that may modulate the ability of the species to spoil wine, in a selection of representative strains. The species shows a fairly high homogeneity with respect to the carbohydrates that can support growth, but more diverse behaviors regarding tolerance to low pH or ethanol. Thought no clear link can be drawn with genotype, some strains appear more tolerant than the others, mainly in the AWRI1499 like genetic group. Volatile phenol production is ubiquitous within the species, independent from yeast growth profile and not affected by the nature of the growth substrate. The specific production. n rate of volatile phenol production raises in case of increased aeration. It is little affected by pH decrease until 3.0 or by ethanol concentration increase up to 12% vol, but it decreased in case of increased constraint (pH < 3.0, Ethanol ≥14% vol) or combination of constraints. All the strain studied have thus the ability to spoil wine but some outstanding dangerous strains can even spoil the wine with high level of constrainst.


Assuntos
Brettanomyces/isolamento & purificação , Vinho/microbiologia , Brettanomyces/efeitos dos fármacos , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Etanol/metabolismo , Conservantes de Alimentos/farmacologia , Genótipo , Concentração de Íons de Hidrogênio , Fenótipo , Dióxido de Enxofre/farmacologia , Vinho/análise
11.
PLoS One ; 14(12): e0222749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851678

RESUMO

Brettanomyces bruxellensis is the main wine spoiler yeast all over the world, yet the structure of the populations associated with winemaking remains elusive. In this work, we considered 1411 wine isolates from 21 countries that were genotyped using twelve microsatellite markers. We confirmed that B. bruxellensis isolates from wine environments show high genetic diversity, with 58 and 42% of putative triploid and diploid individuals respectively distributed in 5 main genetic groups. The distribution in the genetic groups varied greatly depending on the country and/or the wine-producing region. However, the two possible triploid wine groups showing sulfite resistance/tolerance were identified in almost all regions/countries. Genetically identical isolates were also identified. The analysis of these clone groups revealed that a given genotype could be isolated repeatedly in the same winery over decades, demonstrating unsuspected persistence ability. Besides cellar residency, a great geographic dispersal was also evidenced, with some genotypes isolated in wines from different continents. Finally, the study of old isolates and/or isolates from old vintages revealed that only the diploid groups were identified prior 1990 vintages. The putative triploid groups were identified in subsequent vintages, and their proportion has increased steadily these last decades, suggesting adaptation to winemaking practices such as sulfite use. A possible evolutionary scenario explaining these results is discussed.


Assuntos
Brettanomyces/genética , Brettanomyces/isolamento & purificação , DNA Fúngico/análise , Microbiologia de Alimentos , Vinho/análise , Brettanomyces/crescimento & desenvolvimento , DNA Fúngico/genética , Fermentação , Genótipo , Geografia , Vinho/microbiologia
12.
Mol Biotechnol ; 59(8): 323-333, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28667570

RESUMO

Oenococcus oeni is the main bacterial species that drives malolactic fermentation in wine. Most O. oeni strains produce capsular exopolysaccharides (EPS) that may contribute to protect them in the wine hostile environment. In O. oeni genome sequences, several genes are predicted to encode priming glycosyltransferases (pGTs). These enzymes are essential for EPS formation as they catalyze the first biosynthetic step through the formation of a phosphoanhydride bond between a hexose-1-phosphate and a lipid carrier undecaprenyl phosphate. In many microorganisms, mutations abolishing the pGT activity also abolish the EPS formation. We first made an in silico analysis of all the genes encoding putative pGT over 50 distinct O. oeni genome sequences. Two polyisoprenyl-phosphate-hexose-1-phosphate transferases, WoaA and WobA, and a glycosyltransferase (It3) were particularly examined for their topology and amino acid sequence. Several isoforms of these enzymes were then expressed in E. coli, and their substrate specificity was examined in vitro. The substrate specificity varied depending on the protein isoform examined, and several mutations were shown to abolish WobA activity but not EPS synthesis. Further analysis of woaA and wobA gene expression levels suggests that WoaA could replace the deficient WobA and maintain EPS formation.


Assuntos
Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Oenococcus/enzimologia , Sequência de Aminoácidos , Aminoácidos/genética , Cromossomos Bacterianos/genética , Clonagem Molecular , Sequência Conservada , Ensaios Enzimáticos , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glicosiltransferases/química , Interações Hidrofóbicas e Hidrofílicas , Família Multigênica , Oenococcus/genética , Filogenia , Especificidade da Espécie
13.
PLoS One ; 9(6): e98898, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901216

RESUMO

Oenococcus oeni is the bacterial species which drives malolactic fermentation in wine. The analysis of 50 genomic sequences of O. oeni (14 already available and 36 newly sequenced ones) provided an inventory of the genes potentially involved in exopolysaccharide (EPS) biosynthesis. The loci identified are: two gene clusters named eps1 and eps2, three isolated glycoside-hydrolase genes named dsrO, dsrV and levO, and three isolated glycosyltransferase genes named gtf, it3, it4. The isolated genes were present or absent depending on the strain and the eps gene clusters composition diverged from one strain to another. The soluble and capsular EPS production capacity of several strains was examined after growth in different culture media and the EPS structure was determined. Genotype to phenotype correlations showed that several EPS biosynthetic pathways were active and complementary in O. oeni. Can be distinguished: (i) a Wzy-dependent synthetic pathway, allowing the production of heteropolysaccharides made of glucose, galactose and rhamnose, mainly in a capsular form, (ii) a glucan synthase pathway (Gtf), involved in ß-glucan synthesis in a free and a cell-associated form, giving a ropy phenotype to growth media and (iii) homopolysaccharide synthesis from sucrose (α-glucan or ß-fructan) by glycoside-hydrolases of the GH70 and GH68 families. The eps gene distribution on the phylogenetic tree was examined. Fifty out of 50 studied genomes possessed several genes dedicated to EPS metabolism. This suggests that these polymers are important for the adaptation of O. oeni to its specific ecological niche, wine and possibly contribute to the technological performance of malolactic starters.


Assuntos
Genes Bacterianos , Genótipo , Oenococcus/genética , Oenococcus/metabolismo , Fenótipo , Polissacarídeos Bacterianos/biossíntese , Vias Biossintéticas , Mapeamento Cromossômico , Cromossomos Bacterianos , Ordem dos Genes , Loci Gênicos , Genômica , Família Multigênica , Oenococcus/classificação , Oenococcus/ultraestrutura , Filogenia
14.
Int J Food Microbiol ; 166(2): 331-40, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23994162

RESUMO

Temperate bacteriophages are a contributor of the genetic diversity in the lactic acid bacterium Oenococcus oeni. We used a classification scheme for oenococcal prophages based on integrase gene polymorphism, to analyze a collection of Oenococcus strains mostly isolated in the area of Bordeaux, which represented the major lineages identified through MLST schemes in the species. Genome sequences of oenococcal prophages were clustered into four integrase groups (A to D) which were related to the chromosomal integration site. The prevalence of each group was determined and we could show that members of the intB- and intC-prophage groups were rare in our panel of strains. Our study focused on the so far uncharacterized members of the intD-group. Various intD viruses could be easily isolated from wine samples, while intD lysogens could be induced to produce phages active against two permissive O. oeni isolates. These data support the role of this prophage group in the biology of O. oeni. Global alignment of three relevant intD-prophages revealed significant conservation and highlighted a number of unique ORFs that may contribute to phage and lysogen fitness.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/fisiologia , Variação Genética , Integrases/genética , Oenococcus/virologia , Bacteriófagos/enzimologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Sequência de Bases , Genoma Viral/genética , Dados de Sequência Molecular , Filogenia , Prófagos/genética , Alinhamento de Sequência , Vinho/microbiologia
15.
Appl Environ Microbiol ; 79(11): 3371-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524676

RESUMO

Oenococcus oeni, the lactic acid bacterium primarily responsible for malolactic fermentation in wine, is able to grow on a large variety of carbohydrates, but the pathways by which substrates are transported and phosphorylated in this species have been poorly studied. We show that the genes encoding the general phosphotransferase proteins, enzyme I (EI) and histidine protein (HPr), as well as 21 permease genes (3 isolated ones and 18 clustered into 6 distinct loci), are highly conserved among the strains studied and may form part of the O. oeni core genome. Additional permease genes differentiate the strains and may have been acquired or lost by horizontal gene transfer events. The core pts genes are expressed, and permease gene expression is modulated by the nature of the bacterial growth substrate. Decryptified O. oeni cells are able to phosphorylate glucose, cellobiose, trehalose, and mannose at the expense of phosphoenolpyruvate. These substrates are present at low concentrations in wine at the end of alcoholic fermentation. The phosphotransferase system (PTS) may contribute to the perfect adaptation of O. oeni to its singular ecological niche.


Assuntos
Adaptação Biológica/genética , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Oenococcus/enzimologia , Fosfotransferases/genética , Vinho/microbiologia , Análise de Variância , Sequência de Bases , Dados de Sequência Molecular , Oenococcus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...