Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(18): 28658-28669, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710682

RESUMO

The ideal imaging system would efficiently capture information about the fundamental properties of light: propagation direction, wavelength, and polarization. Most common imaging systems only map the spatial degrees of freedom of light onto a two-dimensional image sensor, with some wavelength and/or polarization discrimination added at the expense of efficiency. Thus, one of the most intriguing problems in optics is how to group and classify multiple degrees of freedom and map them on a two-dimensional sensor space. Here we demonstrate through simulation that volumetric meta-optics consisting of a highly scattering, inverse-designed medium structured with subwavelength resolution can sort light simultaneously based on direction, wavelength, and polarization. This is done by mapping these properties to a distinct combination of pixels on the image sensor for compressed sensing applications, including wavefront sensing, beam profiling, and next-generation plenoptic sensors.

2.
Nat Commun ; 14(1): 2768, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179338

RESUMO

Modern imaging systems can be enhanced in efficiency, compactness, and application through the introduction of multilayer nanopatterned structures for manipulation of light based on its fundamental properties. High transmission multispectral imaging is elusive due to the commonplace use of filter arrays which discard most of the incident light. Further, given the challenges of miniaturizing optical systems, most cameras do not leverage the wealth of information in polarization and spatial degrees of freedom. Optical metamaterials can respond to these electromagnetic properties but have been explored primarily in single-layer geometries, limiting their performance and multifunctional capacity. Here we use advanced two-photon lithography to realize multilayer scattering structures that achieve highly nontrivial optical transformations intended to process light just before it reaches a focal plane array. Computationally optimized multispectral and polarimetric sorting devices are fabricated with submicron feature sizes and experimentally validated in the mid-infrared. A final structure shown in simulation redirects light based on its angular momentum. These devices demonstrate that with precise 3-dimensional nanopatterning, one can directly modify the scattering properties of a sensor array to create advanced imaging systems.

3.
ACS Photonics ; 10(4): 836-844, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096213

RESUMO

Photonic topology optimization is a technique used to find the permittivity distribution of a device that optimizes an electromagnetic figure-of-merit. Two common versions are used: continuous density-based optimizations that optimize a gray scale permittivity defined over a grid, and discrete level-set optimizations that optimize the shape of the material boundary of a device. In this work we present a method for constraining a continuous optimization such that it is guaranteed to converge to a discrete solution. This is done by inserting a constrained suboptimization with low computational overhead cost at each iteration of an overall gradient-based optimization. The technique adds only one hyperparameter with straightforward behavior to control the aggressiveness of binarization. Computational examples are provided to analyze the hyperparameter behavior, show this technique can be used in conjunction with projection filters, show the benefits of using this technique to provide a nearly discrete starting point for subsequent level-set optimization, and show that an additional hyperparameter can be introduced to control the overall material/void fraction. This method excels for problems where the electromagnetic figure-of-merit is majorly affected by the binarization requirement and situations where identifying suitable hyperparameter values becomes challenging with existing methods.

4.
Sci Rep ; 11(1): 11145, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045469

RESUMO

Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multi-functional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, a device based on rotating squares, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6-11.6 GHz) in an anechoic chamber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...