Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(1-1): 014615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366414

RESUMO

The propagation of light across 2D and 3D slabs of reflective colloidal particles in a fluidlike state has been investigated by simulation. The colloids are represented as hard spheres with and without an attractive square-well tail. Representative configurations of particles have been generated by Monte Carlo. The path of rays entering the slab normal to its planar surface has been determined by exact geometric scattering conditions, assuming that particles are macroscopic spheres fully reflective at the surface of their hard-core potential. The analysis of light paths provides the transmission and reflection coefficients, the mean-free path, the average length of transmitted and reflected paths, the distribution of scattering events across the slab, the angular spread of the outcoming rays as a function of dimensionality, and thermodynamic state. The results highlight the presence of a sizable population of very long paths, which play an important role in random lasing from solutions of metal particles in an optically active fluid. The output power spectrum resulting from the stimulated emission amplification decays asymptotically as an inverse power law. The present study goes beyond the standard approach based on a random walk confined between two planar interfaces and parametrized in terms of the mean-free path and scattering matrix. Here, instead, the mean-free path, the correlation among scattering events, and memory effects are not assumed a priori, but emerge from the underlying statistical mechanics model of interacting particles. In this way the dependence of properties on the thermodynamic state, the effect of particle-particle and particle-interface correlations and of spatial inhomogeneity, and memory effects are accounted for in a transparent way. Moreover, the approach joins smoothly the ballistic regime of light propagation at low density with the diffusive regime at high density of scattering centers. These properties are exploited to investigate the effect of weak polydispersivity and of large density fluctuations at the critical point of the model with the attractive potential tail.

2.
Biomacromolecules ; 25(3): 1989-2006, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38410888

RESUMO

Polysaccharides play a crucial role in virtually all living systems. They also represent the biocompatible and fully sustainable component of a variety of nanoparticles, which are of increasing interest in biomedicine, food processing, cosmetics, and structural reinforcement of polymeric materials. The computational modeling of complex polysaccharide phases will assist in understanding the properties and behavior of all these systems. In this paper, structural, bonding, and mechanical properties of 10 wt % cellulose-callose hydrogels (ß-glucans coexisting in plant cell walls) were investigated by atomistic simulations. Systems of this kind have recently been introduced in experiments revealing unexpected interactions between the polysaccharides. Starting from initial configurations inspired by X-ray diffraction data, atomistic models made of ∼1.6 × 106 atoms provide a qualitatively consistent view of these hydrogels, displaying stability, homogeneity, connectivity, and elastic properties beyond those of a liquid suspension. The simulation shows that the relatively homogeneous distribution of saccharide nanofibers and chains in water is not due to the solubility of cellulose and callose, but to the formation of a number of cross-links among the various sample components. The broad distribution of strength and elasticity among the links implies a degree of anharmonicity and irreversible deformation already evident at low external load. Besides the qualitative agreement with experimental observations, the simulation results display also quantitative disagreements in the estimation of elastic coefficients, such as the Young's modulus, that require further investigation. Complementary simulations of dense cellulose-callose mixtures (no hydrogels) highlight the role of callose in smoothing the contact surface of different nanofibers forming larger bundles. Cellulose-callose structures in these systems displayed an enhanced water uptake and delayed dye release when compared to cellulose alone, highlighting potential new applications as drug delivery scaffolds. The simulation trajectories provide a tuning and testing ground for the development of coarse-grained models that are required for the large scale investigation of mechanical properties of cellulose and callose mixtures in a watery environment.


Assuntos
Celulose , Glucanos , Nanoestruturas , Celulose/química , Hidrogéis/química , Polissacarídeos/metabolismo , Água
3.
J Phys Chem B ; 127(24): 5494-5508, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267503

RESUMO

Ionic liquids (ILs) whose water solutions are thermoresponsive provide an appealing route to harvest water from the atmosphere at an energy cost that can be accessed by solar heating. IL/water solutions that present a lower critical solution temperature (LCST), i.e., demix upon increasing temperature, represent the most promising choice for this task since they could absorb vapor during the night when its saturation is highest and release liquid water during the day. The kinetics of water absorption at the surface and the role of nanostructuring in this process have been investigated by atomistic molecular dynamics simulations for the ionic liquid tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate whose LCST in water occurs at Tc = 36 °C for solutions of 50-50 wt % composition. The simulation results show that water molecules are readily adsorbed on the IL and migrate along the surface to form thick three-dimensional islands. On a slightly longer time scale, ions crawl on these islands, covering water and recreating the original surface whose free energy is particularly low. At a high deposition rate, this mechanism allows the fast incorporation of large amounts of water, producing subsurface water pockets that eventually merge into the populations of water-rich and IL-rich domains in the nanostructured bulk. Simulation results suggest that strong nanostructuring could ease the separation of water and water-contaminated IL phases even before macroscopic demixing.

4.
J Phys Chem B ; 127(7): 1628-1644, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36786732

RESUMO

Molecular dynamics simulation is applied to investigate the effect of two ionic liquids (IL) on the nucleation and growth of (nano)cavities in water under tension and on the cavities' collapse following the release of tension. Simulations of the same phenomena in two pure water samples of different sizes are carried out for comparison. The first IL, i.e., tetra-ethylammonium mesylate ([Tea][Ms]), is relatively hydrophilic and its addition to water at 25 wt % concentration decreases its tendency to nucleate cavities. Apart from quantitative details, cavity formation and collapse are similar to those taking place in water and qualitatively follow the Rayleigh-Plesset (RP) equation. The second IL, i.e., tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate ([P4444][DMBS]), is amphiphilic and forms nanostructured solutions with water. At 25 wt % concentrations, [P4444][DMBS] favors the nucleation of bubbles that tend to form at the interface between water-rich and IL-rich domains. Cavity collapse in [P4444][DMBS]/water solutions are greatly hindered by a shell of ions decorating the interface between the solution and the vapor phase. A similar effect is observed for the equilibration of a population of bubbles of different sizes. The drastic slowing down of the bubbles' relaxation processes suggests ways to produce long-lived nanometric cavities in the liquid phase that could be useful for nanotechnology and drug delivery.

5.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268747

RESUMO

The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.

6.
J Phys Chem B ; 125(41): 11432-11443, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34634911

RESUMO

Molecular dynamics simulations based on an atomistic empirical force field have been carried out to investigate structural, thermodynamic, and dynamical properties of adlayers made of porphyrin-type molecules physisorbed on surfaces of cellulose Iß nanocrystals. The results show that low-index surfaces provide a thermally stable, weakly perturbing support for the deposition of non-hydrogen-bonded organic molecules. At submonolayer coverage, the discoidal porphyrin molecules lay flat on the surface, forming compact 2D clusters with clear elements of ordering. The adlayer grows layer-by-layer for the smallest porphyrin species on compact cellulose surfaces, while forming 3D clusters on a first relatively ordered adlayer (Stranski-Krastanov growth) in all other cases. The adsorption energy exceeds ∼1 eV per molecule, underlying the thermal stability of the adsorbate. Entropy plays a non-negligible role, destabilizing to some extent the adlayer. The in-plane dynamics of the smallest porphyrin species, i.e., porphine, on compact surfaces shows signs of superlubricity, due to the low energy and momentum exchange between the flat admolecule and the equally flat cellulose surface.


Assuntos
Nanopartículas , Porfirinas , Adsorção , Celulose , Termodinâmica
7.
Langmuir ; 34(33): 9579-9597, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29510045

RESUMO

Empirical evidence and conceptual elaboration reveal and rationalize the remarkable affinity of organic ionic liquids for biomembranes. Cations of the so-called room-temperature ionic liquids (RTILs), in particular, are readily absorbed into the lipid fraction of biomembranes, causing a variety of observable biological effects, including generic cytotoxicity, broad antibacterial potential, and anticancer activity. Chemical physics analysis of model systems made of phospholipid bilayers, RTIL ions, and water confirm and partially explain this evidence, quantifying the mild destabilizing effect of RTILs on the structural, dynamic, and thermodynamic properties of lipids in biomembranes. Our Feature Article presents a brief introduction to these systems and to their roles in biophysics and biotechnology, summarizing recent experimental and computational results on their properties. More importantly, it highlights the many developments in pharmacology, biomedicine, and bionanotechnology expected from the current research effort on this topic. To anticipate future developments, we speculate on (i) potential applications of (magnetic) RTILs to affect and control the rheology of cells and biological tissues, of great relevance for diagnostics and (ii) the use of RTILs to improve the durability, reliability, and output of biomimetic photovoltaic devices.


Assuntos
Membrana Celular/metabolismo , Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Equipamentos e Provisões Elétricas , Imidazóis/química , Líquidos Iônicos/química , Bicamadas Lipídicas/metabolismo , Reologia , Temperatura
8.
J Chem Phys ; 142(12): 124706, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25833602

RESUMO

Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim](+)) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim](+) into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim](+) and of POPC. The [bmim](+) absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.


Assuntos
Líquidos Iônicos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Ânions/química , Cátions/química , Cloretos/química , Difusão , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxigênio/química , Fosfatos/química , Sais/química , Eletricidade Estática , Propriedades de Superfície , Temperatura , Água/química
10.
J Phys Chem B ; 118(42): 12192-206, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25251987

RESUMO

Neutron reflectometry (NR) measurements were carried out to probe the structure and stability of two model biomembranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) phospholipid bilayers hydrated by water solutions of two prototypical room-temperature ionic liquids (RTILs), namely, 1-butyl-3-methyl-imidazolium chloride ([bmim][Cl]) and choline chloride ([Chol][Cl]) at concentrations of 0.1 M and 0.5 M, respectively. The raw data were analyzed by fitting a distribution of scattering length densities arising from the different chemical species in the system. The results of this analysis show that (a) for all systems and concentrations that we considered, the thickness of the bilayers shrinks by ∼1 Šupon dissolving the ionic liquid into water and that (b) the RTIL ions enter the bilayer, finding their way to a preferred location in the lipid range that is nearly independent of the lipid and of the [bimim](+) or [Chol](+) choice. The volume fraction of RTIL sorbed in/on the bilayer, however, does depend on the lipid, but, again, is the same for [bmim][Cl] and for [Chol][Cl]. Thus, the RTIL occupies ∼5% of the bilayer volume in POPC, rising to ∼10% in DMPC. Repeating the measurements and data analysis after rinsing in pure water shows that the changes in the bilayer due to the RTIL sorption are irreversible and that a measurable amount of IL remains in the lipid fraction, that is, ∼2.5% of the bilayer volume in POPC and ∼8% in DMPC.

11.
J Phys Chem B ; 116(36): 11205-16, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22905780

RESUMO

Molecular dynamics simulations based on an empirical force field have been carried out to investigate the properties of a zwitter-ionic phospholipid (POPC) bilayer in contact with a water solution of [bmim][Cl], [bmim][PF(6)] and [bmim][Tf(2)N] at concentration c = 0.5 M. The results reveal important and specific interactions of cations and anions with the bilayer. The [bmim](+) cation, in particular, shows a clear tendency to be incorporated tail-first into the bilayer. [Cl](-) remains in solution, [PF(6)](-) forms a thin layer on the lipid surface, and [bmim][Tf(2)N] precipitates out of the solution, giving rise to an ionic droplet deposited on the lipid surface. The simulation results provide a microscopic basis to interpret the available experimental observations.


Assuntos
Líquidos Iônicos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Simulação de Dinâmica Molecular , Temperatura
12.
Faraday Discuss ; 154: 373-89; discussion 439-64, 465-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22455031

RESUMO

Selected aspects of the ab initio modelling of room temperature ionic liquids are discussed in our contribution, focusing on thermal decomposition reactions, and on the determination of the electrochemical stability window of these compounds. In both cases, we emphasise the role of ab initio simulation methods, able to deal simultaneously with the ionic and electronic side of the systems and phenomena under investigation.


Assuntos
Elétrons , Líquidos Iônicos/química , Teoria Quântica , Temperatura
13.
Chemphyschem ; 13(7): 1772-80, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22392886

RESUMO

The structure of a thin (4 nm) [bmim][Tf(2)N] film on mica was studied by molecular dynamics simulations using an empirical force field. Interfacial layering at T=300 K and at T=350 K is investigated by determining the number- and charge-density profiles of [bmim][Tf(2)N] as a function of distance from mica, and by computing the normal force F(z) opposing the penetration of the ionic liquid film by a spherical nanometric tip interacting with [bmim][Tf(2)N] atoms by a short-range potential. The results show that layering is important but localised within ~1 nm from the interface. The addition of a surface charge on mica, globally neutralised by an opposite charge on the [bmim][Tf(2)N] side, gives rise to low-amplitude charge oscillations extending through the entire film. However, outside a narrow interfacial region, the resistance of the [bmim][Tf(2)N] film to penetration by the mesoscopic tip is only marginally affected by the charge at the interface. The results obtained here for [bmim][Tf(2)N]/mica are similar to those obtained using the same method for the [bmim][Tf(2)N]/silica interface, and agree well with experimental force-distance profiles measured on the latter interface at ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA