Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329875

RESUMO

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transcriptoma/genética , Raízes de Plantas/genética , Linhagem da Célula/genética , Reguladores de Crescimento de Plantas
2.
BMC Biol ; 20(1): 252, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352404

RESUMO

BACKGROUND: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules. RESULTS: We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia. CONCLUSIONS: Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/fisiologia
3.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178121

RESUMO

Differentiation of stem cells in the plant apex gives rise to aerial tissues and organs. Presently, we lack a lineage map of the shoot apex cells in woody perennials - a crucial gap considering their role in determining primary and secondary growth. Here, we used single-nuclei RNA-sequencing to determine cell type-specific transcriptomes of the Populus vegetative shoot apex. We identified highly heterogeneous cell populations clustered into seven broad groups represented by 18 transcriptionally distinct cell clusters. Next, we established the developmental trajectories of the epidermis, leaf mesophyll and vascular tissue. Motivated by the high similarities between Populus and Arabidopsis cell population in the vegetative apex, we applied a pipeline for interspecific single-cell gene expression data integration. We contrasted the developmental trajectories of primary phloem and xylem formation in both species, establishing the first comparison of vascular development between a model annual herbaceous and a woody perennial plant species. Our results offer a valuable resource for investigating the principles underlying cell division and differentiation conserved between herbaceous and perennial species while also allowing us to examine species-specific differences at single-cell resolution.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Populus/genética , Populus/metabolismo , RNA/metabolismo , Transcriptoma/genética , Xilema/metabolismo
4.
New Phytol ; 234(2): 634-649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092309

RESUMO

Nitrogen is one of the most inaccessible plant nutrients, but certain species have overcome this limitation by establishing symbiotic interactions with nitrogen-fixing bacteria in the root nodule. This root-nodule symbiosis (RNS) is restricted to species within a single clade of angiosperms, suggesting a critical, but undetermined, evolutionary event at the base of this clade. To identify putative regulatory sequences implicated in the evolution of RNS, we evaluated the genomes of 25 species capable of nodulation and identified 3091 conserved noncoding sequences (CNS) in the nitrogen-fixing clade (NFC). We show that the chromatin accessibility of 452 CNS correlates significantly with the regulation of genes responding to lipochitooligosaccharides in Medicago truncatula. These included 38 CNS in proximity to 19 known genes involved in RNS. Five such regions are upstream of MtCRE1, Cytokinin Response Element 1, required to activate a suite of downstream transcription factors necessary for nodulation in M. truncatula. Genetic complementation of an Mtcre1 mutant showed a significant decrease of nodulation in the absence of the five CNS, when they are driving the expression of a functional copy of MtCRE1. CNS identified in the NFC may harbor elements required for the regulation of genes controlling RNS in M. truncatula.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Regulação da Expressão Gênica de Plantas , Genômica , Medicago truncatula/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
5.
PLoS One ; 16(5): e0251149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974645

RESUMO

Single-cell transcriptome analysis has been extensively applied in humans and animal models to uncover gene expression heterogeneity between the different cell types of a tissue or an organ. It demonstrated its capability to discover key regulatory elements that determine cell fate during developmental programs. Single-cell analysis requires the isolation and labeling of the messenger RNA (mRNA) derived from each cell. These challenges were primarily addressed in mammals by developing microfluidic-based approaches. For plant species whose cells contain cell walls, these approaches have generally required the generation of isolated protoplasts. Many plant tissues' secondary cell wall hinders enzymatic digestion required for individual protoplast isolation, resulting in an unequal representation of cell types in a protoplast population. This limitation is especially critical for cell types located in the inner layers of a tissue or the inner tissues of an organ. Consequently, single-cell RNA sequencing (scRNA-seq) studies using microfluidic approaches in plants have mainly been restricted to Arabidopsis roots, for which well-established procedures of protoplast isolation are available. Here we present a simple alternative approach to generating high-quality protoplasts from plant tissue by characterizing the mRNA extracted from individual nuclei instead of whole cells. We developed the protocol using two different plant materials with varying cellular complexity levels and cell wall structure, Populus shoot apices, and more lignified stems. Using the 10× Genomics Chromium technology, we show that this procedure results in intact mRNA isolation and limited leakage, with a broad representation of individual cell transcriptomes.


Assuntos
Fracionamento Celular/métodos , Populus/genética , RNA de Plantas , Análise de Sequência de RNA , Perfilação da Expressão Gênica/métodos , Protoplastos , Reprodutibilidade dos Testes , Análise de Célula Única
6.
J Proteomics ; 242: 104247, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33940245

RESUMO

Redox-based post-translational modifications (PTMs) involving protein cysteine residues as redox sensors are important to various physiological processes. However, little is known about redox-sensitive proteins in guard cells and their functions in stomatal immunity. In this study, we applied an integrative protein labeling method cysTMTRAQ, and identified guard cell proteins that were altered by thiol redox PTMs in response to a bacterial flagellin peptide flg22. In total, eight, seven and 20 potential redox-responsive proteins were identified in guard cells treated with flg22 for 15, 30 and 60 min, respectively. The proteins fall into several functional groups including photosynthesis, lipid binding, oxidation-reduction, and defense. Among the proteins, a lipid transfer protein (LTP)-II was confirmed to be redox-responsive and involved in plant resistance to Pseudomonas syringe pv. tomato DC3000. This study not only creates an inventory of potential redox-sensitive proteins in flg22 signal transduction in guard cells, but also highlights the biological relevance of the lipid transfer protein in plant defense against bacterial pathogens. SIGNIFICANCE: Protein redox modifications play important roles in many physiological processes. However, redox proteomics has rarely been studied in plant single cell-types. In this study, isobaric tandem mass tag-based redox proteomics technology was applied to discover redox-sensitive proteins and corresponding cysteine residues in guard cell response to a bacterial flagellin peptide flg22. Many redox-responsive proteins related to photosynthesis, lipid binding, oxidation-reduction, and defense were identified. Using reverse genetics and biochemical analyses, a lipid transfer protein was functionally characterized to be involved in plant defense against pathogens. The study highlights the utility of redox proteomics in discovering new proteins and redox modifications in important stomatal guard cell functions. Furthermore, detailed functional characterization demonstrates the biological relevance of the redox-responsive lipid transfer protein in plant pathogen defense.


Assuntos
Proteômica , Solanum lycopersicum , Proteínas de Transporte , Oxirredução , Estômatos de Plantas
7.
Plant Genome ; 13(3): e20048, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33217213

RESUMO

Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field-testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large-scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.


Assuntos
Seleção Genética , Árvores , Cruzamento , Florestas , Genômica , Árvores/genética
8.
Genome Res ; 30(8): 1131-1143, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817237

RESUMO

Despite the growing resources and tools for high-throughput characterization and analysis of genomic information, the discovery of the genetic elements that regulate complex traits remains a challenge. Systems genetics is an emerging field that aims to understand the flow of biological information that underlies complex traits from genotype to phenotype. In this study, we used a systems genetics approach to identify and evaluate regulators of the lignin biosynthesis pathway in Populus deltoides by combining genome, transcriptome, and phenotype data from a population of 268 unrelated individuals of P. deltoides The discovery of lignin regulators began with the quantitative genetic analysis of the xylem transcriptome and resulted in the detection of 6706 and 4628 significant local- and distant-eQTL associations, respectively. Among the locally regulated genes, we identified the R2R3-MYB transcription factor MYB125 (Potri.003G114100) as a putative trans-regulator of the majority of genes in the lignin biosynthesis pathway. The expression of MYB125 in a diverse population positively correlated with lignin content. Furthermore, overexpression of MYB125 in transgenic poplar resulted in increased lignin content, as well as altered expression of genes in the lignin biosynthesis pathway. Altogether, our findings indicate that MYB125 is involved in the control of a transcriptional coexpression network of lignin biosynthesis genes during secondary cell wall formation in P. deltoides.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Lignina/biossíntese , Populus/genética , Populus/metabolismo , Xilema/metabolismo , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta/genética , Lignina/genética , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma/genética , Xilema/genética
9.
Front Plant Sci ; 11: 590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582229

RESUMO

Alternative splicing (AS) is a mechanism of regulation of the proteome via enabling the production of multiple mRNAs from a single gene. To date, the dynamics of AS and its effects on the protein sequences of individuals in a large and genetically unrelated population of trees have not been investigated. Here we describe the diversity of AS events within a previously genotyped population of 268 individuals of Populus deltoides and their putative downstream functional effects. Using a robust bioinformatics pipeline, the AS events and resulting transcript isoforms were discovered and quantified for each individual in the population. Analysis of the AS revealed that, as expected, most AS isoforms are conserved. However, we also identified a substantial collection of new, unannotated splice junctions and transcript isoforms. Heritability estimates for the expression of transcript isoforms showed that approximately half of the isoforms are heritable. The genetic regulators of these AS isoforms and splice junction usage were then identified using a genome-wide association analysis. The expression of AS isoforms was predominately cis regulated while splice junction usage was generally regulated in trans. Additionally, we identified 696 genes encoding alternatively spliced isoforms that changed putative protein domains relative to the longest protein coding isoform of the gene, and 859 genes exhibiting this same phenomenon relative to the most highly expressed isoform. Finally, we found that 748 genes gained or lost micro-RNA binding sites relative to the longest protein coding isoform of a given gene, while 940 gained or lost micro-RNA binding sites relative to the most highly expressed isoform. These results indicate that a significant fraction of AS events are genetically regulated and that this isoform usage can result in protein domain architecture changes.

10.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32041869

RESUMO

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismo
11.
Front Physiol ; 7: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903877

RESUMO

Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding.

12.
J Proteomics ; 138: 1-19, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26915584

RESUMO

Glucosinolates present in Brassicales are important for human health and plant defense against insects and pathogens. Here we investigate the proteomes and metabolomes of Arabidopsis myb28/29 and cyp79B2/B3 mutants deficient in aliphatic glucosinolates and indolic glucosinolates, respectively. Quantitative proteomics of the myb28/29 and cyp79B2/B3 mutants led to the identification of 2785 proteins, of which 142 proteins showed significant changes in the two mutants compared to wild type (WT). By mapping the differential proteins using STRING, we detected 59 new edges in the glucosinolate metabolic network. These connections can be classified as primary with direct roles in glucosinolate metabolism, secondary related to plant stress responses, and tertiary involved in other biological processes. Gene Ontology analysis of the differential proteins showed high level of enrichment in the nodes belonging to metabolic process including glucosinolate biosynthesis and response to stimulus. Using metabolomics, we quantified 292 metabolites covering a broad spectrum of metabolic pathways, and 89 exhibited differential accumulation patterns between the mutants and WT. The changing metabolites (e.g., γ-glutamyl amino acids, auxins and glucosinolate hydrolysis products) complement our proteomics findings. This study contributes toward engineering and breeding of glucosinolate profiles in plants in efforts to improve human health, crop quality and productivity. BIOLOGICAL SIGNIFICANCE: Glucosinolates in Brassicales constitute an important group of natural metabolites important for plant defense and human health. Its biosynthetic pathways and transcriptional regulation have been well-studied. Using Arabidopsis mutants of important genes in glucosinolate biosynthesis, quantitative proteomics and metabolomics led to identification of many proteins and metabolites that are potentially related to glucosinolate metabolism. This study provides a comprehensive insight into the molecular networks of glucosinolate metabolism, and will facilitate efforts toward engineering and breeding of glucosinolate profiles for enhanced crop defense, and nutritional value.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Sistema Enzimático do Citocromo P-450/genética , Glucosinolatos , Histona Acetiltransferases/genética , Metabolômica , Mutação , Proteômica , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/biossíntese , Glucosinolatos/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...