Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbon Balance Manag ; 10(1): 1, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25632297

RESUMO

BACKGROUND: The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. RESULTS: Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO2, mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. CONCLUSION: These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO2 assimilation leading to higher GPP. However, CO2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.

2.
Glob Health Action ; 32010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21139998

RESUMO

BACKGROUND: In recent years the developing world, much of which is located in the tropical countries, has seen dramatic growth of its urban population associated with serious degradation of environmental quality. Climate change is producing major impacts including increasing temperatures in these countries that are considered to be most vulnerable to the impact of climate change due to inadequate public health infrastructure and low income status. However, relevant information and data for informed decision making on human health and comfort are lacking in these countries. OBJECTIVE: The aim of this paper is to study and compare heat stress conditions in an urban (city centre) and rural (airport) environments in Akure, a medium-sized tropical city in south-western Nigeria during the dry harmattan season (January-March) of 2009. MATERIALS AND METHODS: We analysed heat stress conditions in terms of the mean hourly values of the thermohygrometric index (THI), defined by simultaneous in situ air temperature and relative humidity measurements at both sites. RESULTS: The urban heat island (UHI) exists in Akure as the city centre is warmer than the rural airport throughout the day. However, the maximum UHI intensity occurs at night between 1900 and 2200 hours local time. Hot conditions were predominant at both sites, comfortable conditions were only experienced in the morning and evenings of January at both sites, but the rural area has more pleasant morning and evenings and less of very hot and torrid conditions. January has the lowest frequency of hot and torrid conditions at both sites, while March and February has the highest at the city centre and the airport, respectively. The higher frequencies of high temperatures in the city centre suggest a significant heat stress and health risk in this hot humid environment of Akure. CONCLUSIONS: More research is needed to achieve better understanding of the seasonal variation of indoor and outdoor heat stress and factors interacting with it in order to improve the health, safety, and productivity of Akure city dwellers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...