Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716192

RESUMO

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Nigéria , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Masculino , Proteínas dos Microfilamentos/genética , Feminino , Combinação de Medicamentos , Repetições de Microssatélites/genética , Genótipo , Análise de Sequência de DNA , Recidiva , Polimorfismo Genético , Adulto
2.
Pan Afr Med J ; 46: 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035158

RESUMO

Introduction: Ascorbic acid (AA) is a water-soluble vitamin that is well known for its antioxidant and immune-boosting properties. Owing to the wide-range application of AA in the treatment of numerous ailments and its sweet taste, it is usually abused i.e. overused. However, the effect of the abuse has rarely received attention. Therefore, this study was designed to assess the effect of oral administration of high-dose ascorbic acid on biochemical and haematological parameters as well as the effects on the kidney, liver and lungs. Methods: adult guinea pigs were divided into four (4) groups where group 1 served as the untreated control group and groups 2-4 were dosed with 29 mg, 662 mg and 1258 mg of ascorbic acid per day, respectively for 28 days. Results: the result revealed that administration of high dose ascorbic acid significantly (P<0.05) increased serum creatinine from 50.0 ± 7.09 (NC) to AA29- 73.8 ± 4.5, AA-662-89.7 ± 3.3 and AA1258- 79.9 ± 5.7mmol/L and urea levels in the treatment group AA-1258 -18.3 ± 0.5 µmol/L compared to the normal group (NC-2.15 ± 0.6 µmol/L). Disturbance in electrolyte balance was observed with a significant (P<0.05) increase in Na+ from NC- 131.3 ± 3.5 mmol/L to 135.7 ± 3.6 mmol/L in the AA-1258 treatment group, Cl- ( NC- 67.1 ± 1.6 mmol/L increased to AA29- 92.1 ± 0.83, AA662- 95.3 ± 1.3 and AA-1258- 95.6 ± 0.4 mmol/L), and Ca2+ (NC- 2.66 ± 0.03 to AA1258- 3.36 ± 0.03 mmol/L) and a significant (P<0.05) decrease in serum K+ in the AA29-5.0 ± 0.2, AA662-5.2 ± 0.3 and AA1258-5.6 ± 0.3 mmol/L treatment groups compared to the normal group 6.6 ± 0.3 mmol/L. There was also a significant (P<0.05) increase in the differential blood count in the animals with a significant (P<0.05) increase in red blood count ( NC-5.11 ± 0.13 ×106/µL to AA1258- 5.75 ± 0.11×106/µL ), haematocrit count (NC 39.90 ± 0.52% to AA-29-42.08 ± 0.24 and AA1258-46.13 ± 0.86%), white blood count (NC 10.15 ± 1.01 ×103/µL to AA1258- 15.18 ± 1.65×103/µL ), total lymphocytes (NC 3.5 ± 0.51×103/µL to AA29-5.28 ±0.43×103/µL), monocytes (NC 0.45 ± 0.07×103/µL to AA1258 0.80 ± 0.07×103/µL), eosinophils (NC 0.23 ± 0.03×103/µL to AA12580.40 ± 0.03×103/µL), basophils (NC0.68 ± 0.10×103/µL to AA12581.20 ± 0.10×103/µL) and neutrophil count (NC 4.73 ± 0.68×103/µL to AA1258 8.36 ± 0.71×103/µL). The histopathological indices indicate cellular necrosis in the AA662 and AA1258 treatment groups of the kidney and liver respectively compared to the normal control which has normal cells. Conclusion: high dose of ascorbic acid can therefore be suggested to cause damage to the cells by causing cellular necrosis as observed in the histopathology results and has effect on the blood cells as observed in the increase compared to the normal control, and the consequences are possibly triggered through inflammatory responses.


Assuntos
Antineoplásicos , Antioxidantes , Cobaias , Animais , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Pulmão , Necrose
3.
Parasitol Res ; 122(12): 2751-2772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851179

RESUMO

Schistosomiasis is a neglected tropical disease caused by a parasitic, trematode blood fluke of the genus Schistosoma. With 20 million people infected, mostly due to Schistosoma haematobium, Nigeria has the highest burden of schistosomiasis in the world. We review the status of human schistosomiasis in Nigeria regarding its distribution, prevalence, diagnosis, prevention, orthodox and traditional treatments, as well as snail control strategies. Of the country's 36 states, the highest disease prevalence is found in Lagos State, but at a geo-political zonal level, the northwest is the most endemic. The predominantly used diagnostic techniques are based on microscopy. Other methods such as antibody-based serological assays and DNA detection methods are rarely employed. Possible biomarkers of disease have been identified in fecal and blood samples from patients. With respect to preventive chemotherapy, mass drug administration with praziquantel as well as individual studies with artemisinin or albendazole have been reported in 11 out of the 36 states with cure rates between 51.1 and 100%. Also, Nigerian medicinal plants have been traditionally used as anti-schistosomal agents or molluscicides, of which Tetrapleura tetraptera (Oshosho, aridan, Aidan fruit), Carica papaya (Gwanda, Ìbépe, Pawpaw), Borreria verticillata (Karya garma, Irawo-ile, African borreria), and Calliandra portoricensis (Tude, Oga, corpse awakener) are most common in the scientific literature. We conclude that the high endemicity of the disease in Nigeria is associated with the limited application of various diagnostic tools and preventive chemotherapy efforts as well as poor knowledge, attitudes, and practices (KAP). Nonetheless, the country could serve as a scientific base in the discovery of biomarkers, as well as novel plant-derived schistosomicides and molluscicides.


Assuntos
Plantas Medicinais , Esquistossomose Urinária , Esquistossomose , Animais , Humanos , Nigéria/epidemiologia , Esquistossomose/diagnóstico , Esquistossomose/tratamento farmacológico , Esquistossomose/epidemiologia , Schistosoma haematobium , Extratos Vegetais , Biomarcadores , Esquistossomose Urinária/parasitologia
4.
BMC Pediatr ; 23(1): 538, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891551

RESUMO

BACKGROUND: This study presents the clinical pattern of presentation and survival rate of retinoblastoma, which is the most prevalent form of pediatric intraocular cancer. The aim of this study is to provide baseline information about the clinical presentation and management of retinoblastoma at ECWA Eye Hospital. Additionally, the study identifies priority areas for enhancing medical care for children diagnosed with this cancer. ECWA Eye Hospital, situated in Kano State, Nigeria, is a specialized eye center located in the North-Western region of the country. METHODS: A prospective study spanning five years was conducted at ECWA Eye Hospital to investigate clinically diagnosed cases of retinoblastoma. The study took place from January 2018 to December 2022. The patients received standardized pre-medication and chemotherapy protocols for retinoblastoma. Subsequently, a five-year follow-up was conducted to monitor the patients' progress. The collected data was analyzed, descriptive statistics were generated, and the survival rate was calculated. RESULTS: During the five-year study period, a total of 35 cases of retinoblastoma were diagnosed. The patients had an average age of 3.21 ± 1.32 years. The most common presentation patterns observed were fungating ocular mass and proptosis. Among the cases, there were 10 instances of bilateral proptosis and 25 instances of unilateral proptosis. While no patients exhibited bilateral leukocoria, eight cases of unilateral leukocoria with anterior segment seedlings were identified. The additional patterns of presentation are proptosis, leukocoria, fungating orbital mass, redness and loss of vision. The mortality rate was 80% (28 cases), while the survival rate was 20% (7 cases). Notably, all the survivors had unilateral retinoblastoma. CONCLUSION: The majority of cases observed at ECWA Eye Hospital involve advanced retinoblastoma. In low-resource settings where alternative treatment options are limited, chemotherapy is considered a viable treatment option. Early presentation of retinoblastoma in patients may lead to a higher survival rate when chemotherapy is administered.


Assuntos
Exoftalmia , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Lactente , Pré-Escolar , Retinoblastoma/tratamento farmacológico , Neoplasias da Retina/tratamento farmacológico , Estudos Prospectivos , Taxa de Sobrevida , Nigéria/epidemiologia , Enucleação Ocular , Estudos Retrospectivos
5.
Front Cell Infect Microbiol ; 13: 1219629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719668

RESUMO

Introduction: Female sand flies are hematophagous, feeding on animals and in the process serve as vectors for Leishmania, the parasites that cause leishmaniasis in humans. Leishmaniasis are a group of parasitic neglected tropical diseases in 98 countries including Nigeria and kills ~60,000 people/year. In Nigeria, Sokoto State is endemic to leishmaniasis but there is a knowledge gap on the identity of the prevalent sand flies and the Leishmania species they transmit. Hence, this cross-sectional study was designed to take inventory of the species of sand flies in Sokoto using genetic methods. Methods: 1,260 (310 females) sand flies were collected from three Local Government Areas (L.G.A) of Sokoto State- Wamakko, Sokoto South and Kware. Genomic DNA was extracted from each fly and DNA amplification by polymerase chain reaction (PCR) was carried out on the DNA samples using primers targeting the arthropods mitochondrial cytochrome oxidase subunit 1 (mt-coI) gene, and nested PCR with primers targeting the gene for Leishmania internal transcribed spacer-1 (its-1) of ribosomal RNA its-1rRNA. The PCR products were sequenced. Results: Gene sequence analysis revealed five species of sand flies belonging to the old-world genera namely Phlebotomus and Sergentomyia. The identified species were P. papatasi (6.45%), S. adleri (6.45%), S. affinis (9.7%), S. distincta (9.7%), S. schwetzi (67.7%). Within the sampling period, sand flies were most abundant in the rainy months of August (104/33.5%) and September (116/37.4%) with all the five identified species occurring. Sequence analysis of its-1 gene identified Leishmania infantum in two sand flies (2/310)- P. papatasi (from Sokoto South) and S. affinis (from Wamakko). BLAST search in NCBI and phylogenetic analysis revealed that the sand fly species are related to the species reported in different parts of Africa, while the L. infantum is identical to strain reported in Brazil (KY379083.1). Discussion: Phlebotomus papatasi and four species belonging to the genus Sergentomyia are the most prevalent sand flies in Sokoto State, Nigeria and they harbor L. infantum solely. The results shed light on why visceral leishmaniasis is the most predominant form of the disease. Therefore, we recommend that adequate care for dogs must be instituted as dogs are the major animal reservoir for L. infantum.


Assuntos
Leishmania infantum , Phlebotomus , Psychodidae , Humanos , Feminino , Animais , Cães , Nigéria , Estudos Transversais , Filogenia
6.
Sci Rep ; 13(1): 14596, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669981

RESUMO

Amebiasis is caused by the protozoan parasite Entamoeba histolytica. Treatment options other than metronidazole and its derivatives are few, and their low efficacy against asymptomatic cyst carriers, and experimental evidence of resistance in vitro justify the discovery/repurposing campaign for new drugs against amebiasis. Global metabolic responses to oxidative stress and cysteine deprivation by E. histolytica revealed glycerol metabolism may represent a rational target for drug development. In this study using 14C-labelled glucose, only 11% of the total glucose taken up by E. histolytica trophozoites is incorporated to lipids. To better understand the role of glycerol metabolism in this parasite, we focused on characterizing two important enzymes, glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (G3PDH). Recombinant GK was biochemically characterized in detail, while G3PDH was not due to failure of protein expression and purification. GK revealed novel characteristics and unprecedented kinetic properties in reverse reaction. Gene silencing revealed that GK is essential for optimum growth, whereas G3PDH is not. Gene silencing of G3PDH caused upregulated GK expression, while that of GK resulted in upregulation of antioxidant enzymes as shown by RNA-seq analysis. Although the precise molecular link between GK and the upregulation of antioxidant enzymes was not demonstrated, the observed increase in antioxidant enzyme expression upon GK gene silencing suggests a potential connection between GK and the cellular response to oxidative stress. Together, these results provide the first direct evidence of the biological importance and coordinated regulation of the glycerol metabolic pathways for proliferation and antioxidative defense in E. histolytica, justifying the exploitation of these enzymes as future drug targets.


Assuntos
Amebíase , Entamoeba histolytica , Parasitos , Humanos , Animais , Antioxidantes , Vias Biossintéticas , Glicerol , Glicerol Quinase , Proliferação de Células
7.
BMC Microbiol ; 23(1): 260, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716961

RESUMO

BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively. CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.


Assuntos
Glossinidae , Spiroplasma , Tripanossomíase Africana , Moscas Tsé-Tsé , Wolbachia , Animais , Wolbachia/genética , Camarões , Chade , Nigéria , Spiroplasma/genética
8.
Ann Med Surg (Lond) ; 85(5): 1518-1522, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37229087

RESUMO

Glaucoma is a group of diseases that damage the optic nerve in the eye, resulting in vision loss and, in severe cases, blindness. The prevalence of glaucoma and glaucoma blindness is highest in West Africans. Objective: The study presents a 5-year retrospective analysis of intraocular pressure (IOP) and complications after trabeculectomy. Materials and methods: Trabeculectomy was performed using 5 mg/ml of 5-fluorouracil. A gentle diathermy was performed to secure hemostasis. Using a blade fragment of the scleral thickness, a 4×3 mm rectangular scleral flap was dissected. The central part of the flap was dissected 1 mm into the clear cornea. Before being tailed down, the patient was given topical 0.05% dexamethasone qid, 1% atropine tid, and 0.3% ciprofloxacin qid for 4-6 weeks. Patients with pain were given pain relievers, and all patients with photophobia were given sun protection. A successful surgical outcome was defined as a postoperative IOP of 20 mmHg or less. Results: There were 161 patients over the 5-year period under review, with men constituting 70.2% of the total. Out of 275 eyes operated on, 82.9% were bilateral cases, while 17.1% were unilateral. Glaucoma was found in both children and adults aged 11-82 years. However, it was observed to predominate between the ages of 51 and 60, with males having the highest incidence. The average preoperative IOP was 24.37 mmHg, while it was 15.24 mmHg postoperatively. The complication with the highest ranking was shallow anterior chamber (24; 8.73%) due to overfiltration, followed by leaking bleb (8; 2.91%). The most common late complications were cataract (32; 11.64%) and fibrotic bleb (8; 2.91%). Bilateral cataracts developed at an average of 25 months after trabeculectomy. It was seen in patients aged 2-3 with a frequency of 9, whereas 5 years after, 77 patients had improved vision, with a postoperative visual acuity of 6/18-6/6. Conclusion: Postoperatively, the patients had satisfying surgical outcomes as a result of the decrease in preoperative IOP. Although postoperative complications occurred, they had no effect on the surgical outcomes because they were temporary and not optically threatening. In our experience, trabeculectomy is an effective and safe procedure for achieving IOP control.

9.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214831

RESUMO

Background Tsetse flies are cyclical vectors of African trypanosomiasis. They have established symbiotic associations with different bacteria, which influence certain aspects of their physiology. The vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by various factors, amongst which are bacterial endosymbionts. Symbiotic interactions may provide an avenue for the disease control. The current study provided the prevalence of 3 tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. Results Tsetse flies were collected from five different locations and dissected. DNA was extracted and polymerase chain reaction PCR was used to detect the presence of Sodalis glossinidius , Spiroplasma sp and Wolbachia using specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the 3 symbionts. Among the infected, 6 (6.31%) were carrying mixed infection ( Wolbachia and Spiroplasma ). The overall symbiont prevalence was 0.88%, 3.66% and 11.00% respectively, for Sodalis , Spiroplasma and Wolbachia . Prevalence varied between countries and tsetse species. No Spiroplasma was detected in samples from Cameroon and no Sodalis was found in samples from Nigeria. Conclusion The present study revealed for the first time, the presence of infection by Spiroplasma in tsetse in Chad and Nigeria. These findings provide useful information to the repertoire of bacterial flora of tsetse flies and incite to more investigations to understand their implication in the vector competence of tsetse flies.

10.
Eur J Pharm Sci ; 186: 106451, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088149

RESUMO

African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".


Assuntos
Tripanossomíase Africana , Ubiquitina-Proteína Ligases , Animais , Humanos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Proteínas , Descoberta de Drogas/métodos
11.
J Biomol Struct Dyn ; 41(1): 45-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812693

RESUMO

African trypanosomiasis is caused by Trypanosoma brucei subspecies and available drugs against it, are unsatisfactory due to poor pharmacokinetic properties. Trypanosomal Alternative Oxidase (TAO) is an attractive target for anti-trypanosome rational drug discovery because it is essential for parasite-specific ATP generation and absent in the mammalian host. In this study, 360 filtered ligands from the Universal Natural Product Database were virtually screened and docked on T. brucei brucei TAO (PDB-ID 3VVA). From the virtual screening, 10 ligands with binding energy from -10.6 to -9.0 kcal/mol were selected as hits and further subjected pharmacokinetic and toxicity analyses where all of them passed Lipinski's rule of five. Also, the compounds were non-mutagenic, non-tumorigenic and could cross the blood brain barrier. The two topmost hits (UNPD29179; megacerotonic acid and UNPD41551; a quinazoline derivative) interacted with `four glutamates (Glu123, Glu162, Glu213 and Glu266) close to di-iron (2 iron elements) at the catalytic site of the enzyme. Subsequently, 100 ns MD simulations of the two topmost hits were performed using GROMACS where high RMSD values of 0.75 nm (TAO-UNPD29179) and 0.52 nm (TAO- UNPD41551), low residues fluctuations and consistent values of radius of gyration were observed. Moreover, Solvent Accessible Surface Area showed a consistent value of 160 nm2 for both complexes while TAO-UNPD29179 had higher number of hydrogen bonds than the TAO-UNPD41551. Similarly, MM/PBSA calculations indicated that UNPD29179 had higher free binding energy with TAO than UNPD41551. The data suggest that megacerotonic acid and a quinazoline derivative could be potential inhibitors of TAO with improved pharmacokinetic properties.Communicated by Ramaswamy H. Sarma.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Trypanosoma brucei brucei/metabolismo , Simulação de Acoplamento Molecular , Tripanossomíase Africana/tratamento farmacológico , Simulação de Dinâmica Molecular , Mamíferos
12.
Toxics ; 10(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548605

RESUMO

Microcystins are produced by multifaceted organisms called cyanobacteria, which are integral to Africa's freshwater environments. The excessive proliferation of cyanobacteria caused by rising temperature and eutrophication leads to the production and release of copious amounts of microcystins, requiring critical management and control approaches to prevent the adverse environmental and public health problems associated with these bioactive metabolites. Despite hypotheses reported to explain the phylogeography and mechanisms responsible for cyanobacterial blooms in aquatic water bodies, many aspects are scarcely understood in Africa due to the paucity of investigations and lack of uniformity of experimental methods. Due to a lack of information and large-scale studies, cyanobacteria occurrence and genetic diversity are seldom reported in African aquatic ecosystems. This review covers the diversity and geographical distribution of potential microcystin-producing and non-microcystin-producing cyanobacterial taxa in Africa. Molecular analyses using housekeeping genes (e.g., 16S rRNA, ITS, rpoC1, etc.) revealed significant sequence divergence across several cyanobacterial strains from East, North, West, and South Africa, but the lack of uniformity in molecular markers employed made continent-wise phylogenetic comparisons impossible. Planktothrix agardhii, Microcystis aeruginosa, and Cylindrospermopsis raciborskii (presently known as Raphidiopsis raciborskii) were the most commonly reported genera. Potential microcystin (MCs)-producing cyanobacteria were detected using mcy genes, and several microcystin congeners were recorded. Studying cyanobacteria species from the African continent is urgent to effectively safeguard public and environmental health because more than 80% of the continent has no data on these important microorganisms and their bioactive secondary metabolites.

13.
Comput Struct Biotechnol J ; 20: 5574-5585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284708

RESUMO

Human African trypanosomiasis (HAT) is a neglected tropical disease that is caused by flagellated parasites of the genus Trypanosoma. HAT imposes a significant socio-economic burden on many countries in sub-Saharan Africa and its control is hampered by several drawbacks ranging from the ineffectiveness of drugs, complex dosing regimens, drug resistance, and lack of a vaccine. Despite more than a century of research and investigations, the development of a vaccine to tackle HAT is still challenging due to the complex biology of the pathogens. Advancements in computational modeling coupled with the availability of an unprecedented amount of omics data from different organisms have allowed the design of new generation vaccines that offer better antigenicity and safety profile. One of such new generation approaches is a multi-epitope vaccine (MEV) designed from a collection of antigenic peptides. A MEV can stimulate both cellular and humoral immune responses as well as avoiding possible allergenic reactions. Herein, we take advantage of this approach to design a MEV from conserved hypothetical plasma membrane proteins of Trypanosoma brucei gambiense, the trypanosome subspecies that is responsible for the west and central African forms of HAT. The designed MEV is 402 amino acids long (41.5 kDa). It is predicted to be antigenic, non-toxic, to assume a stable 3D conformation, and to interact with a key immune receptor. In addition, immune simulation foresaw adequate immune stimulation by the putative antigen and a lasting memory. Therefore, the designed chimeric vaccine represents a potential candidate that could be used to target HAT.

14.
Front Mol Biosci ; 9: 1070080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601587

RESUMO

The latest world malaria report revealed that human deaths caused by malaria are currently on the rise and presently stood at over 627,000 per year. In addition, more than 240 million people have the infection at any given time. These figures make malaria the topmost infectious disease and reiterate the need for continuous efforts for the development of novel chemotherapies. Malaria is an infectious disease caused majorly by the protozoan intracellular parasite Plasmodium falciparum and transmitted by mosquitoes. Reports abound on the central role of falcipains (cysteine protease enzymes) in the catabolism of hemoglobin for furnishing the plasmodium cells with amino acids that they require for development and survival in the hosts. Even though falcipains (FPs) have been validated as drug target molecules for the development of new antimalarial drugs, none of its inhibitory compounds have advanced beyond the early discovery stage. Therefore, there are renewed efforts to expand the collection of falcipain inhibitors. As a result, an interesting finding reported the discovery of a quinolinyl oxamide derivative (QOD) and an indole carboxamide derivative (ICD), with each compound demonstrating good potencies against the two essential FP subtypes 2 (FP-2) and 3 (FP-3). In this study, we utilized microsecond-scale molecular dynamics simulation computational method to investigate the interactions between FP-2 and FP-3 with the quinolinyl oxamide derivative and indole carboxamide derivative. The results revealed that quinolinyl oxamide derivative and indole carboxamide derivative bound tightly at the active site of both enzymes. Interestingly, despite belonging to different chemical scaffolds, they are coordinated by almost identical amino acid residues via extensive hydrogen bond interactions in both FP-2 and FP-3. Our report provided molecular insights into the interactions between FP-2 and FP-3 with quinolinyl oxamide derivative and indole carboxamide derivative, which we hope will pave the way towards the design of more potent and druglike inhibitors of these enzymes and will pave the way for their development to new antimalarial drugs.

15.
Acta Parasitol ; 67(1): 130-142, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34164784

RESUMO

INTRODUCTION: African Animal Trypanosomiasis (AAT) or nagana in animals, is caused by the blood-borne parasitic protozoa called trypanosomes, and is potentially fatal. It is estimated that Africa loses $4‒5 billion annually due to the death of livestock to nagana in the tsetse belt. PURPOSE: Although The Gambia lies within this belt, there is scanty data regarding the epizootiology of nagana in The Gambia. Here, records of reported cases of nagana for the period 2010-2019 at the International Trypanotolerance Centre (ITC) in The Gambia were analyzed retrospectively. METHODS: For insights into the current prevalence of AAT, blood samples of 384 cattle, 42 goats, and 59 sheep from the Central River Region (CRR) and Lower River Region (LRR) were analyzed microscopically for parasite identification. Furthermore, trypanosomes were characterized by polymerase chain reaction (PCR) using a panel of primers that identify trypanosomes to the level of the species and subspecies by targeting a portion of the internally transcribed spacer-one (ITS-1) of the ribosomal RNA. RESULTS: The retrospective study indicates that Trypanosoma vivax (66%) and T. congolense (33.4%) were the predominant species. Based on the archive records of ITC, the villages Touba, Misera, and Sambel Kunda all in the CRR of the Gambia are the most burdened with AAT. Microscopic examination of blood samples from cattle showed a prevalence of 1.56%, whereas the PCR-based analysis gave a higher prevalence of 12.5%. The molecular analysis revealed the presence of T. vivax (3.65%), T. congolense kilifi (2.6%), T. b. brucei (1.3%), T. congolense savannah/forest (0.52%), T. b. gambiense (0.52%). Interestingly, 4.43% of mixed infections i.e. multiple trypanosome species in individual animals were recorded. In 18% of the mixed infection cases, T. godfreyi, T. simiae were coinfecting cattle alongside T. congolense. The molecular identification including the phylogenetic analysis implicated T. congolense as the most predominant trypanosome species infecting animals in The Gambia. CONCLUSION: The incidence of nagana in The Gambia is documented and the prevalent trypanosomes identified to be T. vivax, different types of T. congolense, and T. brucei including the gambiense subspecie. Finally, nagana is less profound in sheep and goats compared to cattle, with seasonal and regional variations playing a significant role in the disease dynamics.


Assuntos
Trypanosoma , Tripanossomíase Africana , Animais , Bovinos , Gâmbia/epidemiologia , Gado , Filogenia , Estudos Retrospectivos , Ruminantes , Ovinos , Trypanosoma/genética , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária
16.
PLoS One ; 16(12): e0258348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936646

RESUMO

BACKGROUND: Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave. METHODS: This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training. RESULTS: We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0-14.0) and the median awareness score was 29.6 (IQR = 26.6-32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a 'great-extent-of-confidence' in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors. INTERPRETATION: There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type.


Assuntos
COVID-19/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Recursos Humanos em Hospital , Adulto , COVID-19/prevenção & controle , Estudos Transversais , Educação Médica Continuada/estatística & dados numéricos , Feminino , Humanos , Masculino , Recursos Humanos em Hospital/estatística & dados numéricos , Fatores Socioeconômicos , Inquéritos e Questionários
17.
One Health ; 13: 100340, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34820498

RESUMO

Rift Valley fever (RVF) is a complex emerging arboviral hemorrhagic disease that causes significant illness in animals and humans. Camel trade across the land borders between Nigeria and the Niger Republic occurs frequently and poses a significant risk for RVF transmission to pastoralists and traders. We carried a cross-sectional study between November 2016 and April 2017 in two northern States (Katsina and Jigawa) known for camel trade in Nigeria to investigate the seroprevalence and potential risk factors for RVFV occurrence. We collected 720 sera and administered questionnaire to pastoralists. We used the competitive enzyme-linked immunosorbent assay (c-ELISA) to determine the previous exposure to RVFV infection. We retrieved  environmental information from public data sources that might explain RVFV seropositivity at  the LGA level. To asses potential risk factors,we categorized LGAs with RVFV as "1" and those without a case" 0". We fitted a logistic model to the data  and estimated odds ratios and 95% confidence intervals. An overall 19.9% prevalence was reported among camel herd-the highest seropositivity (33.3%) was recorded in SuleTankarkar LGA. In the multivariable model, only rain-fed croplands was significantly associated with RVFV antibodies occurrence p = 0.048 (OR = 0.87, 95% CI: 0.76-0.99). Only a minority of the respondents, 19.3% (n = 17/88), knew that RVF is zoonotic. Separation of healthy animals from the infected animals was carried out by 53.4% (47/88) pastoralists while 59.1% (52/88) pastoralists still use ethnoveterinary practices to control or mitigate disease outbreaks. Our study demonstrates the presence of RVFV antibodies among camel in Nigeria and the associated risk factors. These findings highlight the need for enhancing surveillance and control efforts and the public health education of camel pastoralists. Further investigation to unravel the zoonotic transmission potential to pastoralists and other animal species is pertinent.

18.
Malar J ; 19(1): 439, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256739

RESUMO

BACKGROUND: The analysis of single nucleotide polymorphism (SNPs) in drug-resistance associated genes is a commonly used strategy for the surveillance of anti-malarial drug resistance in populations of parasites. The present study was designed and performed to provide genetic epidemiological data of the prevalence of N86Y-Y184F-D1246Y SNPs in Plasmodium falciparum multidrug resistance 1 (pfmdr1) in the malaria hotspot of Northern Nigeria. METHODS: Plasmodium falciparum-positive blood samples on Whatman-3MM filter papers were collected from 750 symptomatic patients from four states (Kano, Kaduna, Yobe and Adamawa) in Northern Nigeria, and genotyped via BigDye (v3.1) terminator cycle sequencing for the presence of three SNPs in pfmdr1. SNPs in pfmdr1 were used to construct NYD, NYY, NFY, NFD, YYY, YYD, YFD and YFY haplotypes, and all data were analysed using Pearson Chi square and Fisher's exact (FE) tests. RESULTS: The prevalence of the pfmdr1 86Y allele was highest in Kaduna (12.50%, 2 = 10.50, P = 0.02), whilst the 184F allele was highest in Kano (73.10%, 2 = 13.20, P = 0.00), and the pfmdr1 1246Y allele was highest in Yobe (5.26%, 2 = 9.20, P = 0.03). The NFD haplotype had the highest prevalence of 69.81% in Kano (2 = 36.10, P = 0.00), followed by NYD with a prevalence of 49.00% in Adamawa, then YFD with prevalence of 11.46% in Kaduna. The YYY haplotype was not observed in any of the studied states. CONCLUSION: The present study suggests that strains of P. falciparum with reduced sensitivity to the lumefantrine component of AL exist in Northern Nigeria and predominate in the North-West region.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Resistência a Múltiplos Medicamentos/genética , Genes MDR , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Nigéria
19.
Acta Parasitol ; 65(3): 733-742, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32385812

RESUMO

INTRODUCTION: Protozoan parasites of the Order Trypanosomatida infect a wide range of multicellular plants and animals, causing devastating and potentially fatal diseases. Trypanosomes are the most relevant members of the order in sub-Saharan Africa because of mortalities and morbidities caused to humans and livestock. PURPOSE: There are growing concerns that trypanosomes are expanding their reservoirs among wild animals, which habours the parasites, withstand the infection, and from which tsetse flies transmit the parasites back to humans and livestock. This study was designed to investigate the potentials of the African hedgehog serving as reservoir for African animal trypanosomes. METHODS: Five adult hedgehogs alongside five laboratory mice were intraperitoneally inoculated with 106 and 104 of Trypanosoma congolense cells, respectively, and monitored for parasitemia and survival. Serum from twenty hedgehogs was subjected to trypanocidal activity-guided fractionation by successive ion-exchange and gel-filtration chromatographies, followed by characterization with Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). RESULTS: Hedgehogs were resistant to the infection as no parasite was detected and none died even after 60 days, while all the mice died within 12 days. Both the serum and plasma prepared from hedgehogs demonstrated trypanocidal activity- rapidly killed trypanosomes even when diluted 1000 times. The trypanolytic factor was identified to be proteinaceous with an estimated molecular weight of 115-kDa. CONCLUSION: For the first time, it is here demonstrated that hedgehog blood has significant trypanolytic activity against T. congolense. The potential application of the hedgehog protein for the breeding of trypanosomosis-resistant livestock in tsetse fly belt is discussed.


Assuntos
Reservatórios de Doenças/parasitologia , Reservatórios de Doenças/veterinária , Ouriços/parasitologia , Imunidade Inata , Tripanossomíase Africana/veterinária , Animais , Animais Selvagens/parasitologia , Proteínas Sanguíneas , Ouriços/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/sangue , Tripanossomíase Africana/microbiologia
20.
FASEB J ; 33(11): 13002-13013, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525300

RESUMO

African trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs. Our goal is to develop a TGK-specific inhibitor for coadministration with ascofuranone (AF), the most potent TAO inhibitor. Here, we report on the identification of novel compounds with inhibitory potency against TGK. Importantly, one of these compounds (compound 17) and its derivatives (17a and 17b) killed trypanosomes even in the absence of AF. Inhibition kinetics revealed that derivative 17b is a mixed-type and competitive inhibitor for TGK and TAO, respectively. Structural data revealed the molecular basis of this dual inhibitory action, which, in our opinion, will aid in the successful development of a promising drug to treat trypanosomiasis. Although the EC50 of compound 17b against trypanosome cells was 1.77 µM, it had no effect on cultured human cells, even at 50 µM.-Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y.-I., Moore, A. L., Harada, S., Kita, K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei.


Assuntos
Cumarínicos/farmacologia , Descoberta de Drogas , Glicerol Quinase/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Cumarínicos/química , Glicerol Quinase/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Trypanosoma brucei brucei/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...