Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2(9): 958-973, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32868922

RESUMO

Cellular metabolic reprogramming is an important mechanism by which cells rewire their metabolism to promote proliferation and cell growth. This process has been mostly studied in the context of tumorigenesis, but less is known about its relevance for nonpathological processes and how it affects whole-animal physiology. Here, we show that metabolic reprogramming in Drosophila female germline cells affects nutrient preferences of animals. Egg production depends on the upregulation of the activity of the pentose phosphate pathway in the germline, which also specifically increases the animal's appetite for sugar, the key nutrient fuelling this metabolic pathway. We provide functional evidence that the germline alters sugar appetite by regulating the expression of the fat-body-secreted satiety factor Fit. Our findings demonstrate that the cellular metabolic program of a small set of cells is able to increase the animal's preference for specific nutrients through inter-organ communication to promote specific metabolic and cellular outcomes.


Assuntos
Apetite/fisiologia , Reprogramação Celular/fisiologia , Drosophila/metabolismo , Açúcares , Animais , Diversidade de Anticorpos , Carcinogênese , Carboidratos da Dieta/farmacologia , Corpo Adiposo/metabolismo , Feminino , Preferências Alimentares , Fome/fisiologia , Ovário/fisiologia , Via de Pentose Fosfato , Inanição
2.
Nat Commun ; 11(1): 4236, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843654

RESUMO

The impact of commensal bacteria on the host arises from complex microbial-diet-host interactions. Mapping metabolic interactions in gut microbial communities is therefore key to understand how the microbiome influences the host. Here we use an interdisciplinary approach including isotope-resolved metabolomics to show that in Drosophila melanogaster, Acetobacter pomorum (Ap) and Lactobacillus plantarum (Lp) a syntrophic relationship is established to overcome detrimental host diets and identify Ap as the bacterium altering the host's feeding decisions. Specifically, we show that Ap uses the lactate produced by Lp to supply amino acids that are essential to Lp, allowing it to grow in imbalanced diets. Lactate is also necessary and sufficient for Ap to alter the fly's protein appetite. Our data show that gut bacterial communities use metabolic interactions to become resilient to detrimental host diets. These interactions also ensure the constant flow of metabolites used by the microbiome to alter reproduction and host behaviour.


Assuntos
Dieta , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Microbioma Gastrointestinal/fisiologia , Acetobacter/crescimento & desenvolvimento , Acetobacter/metabolismo , Aminoácidos/deficiência , Aminoácidos/metabolismo , Animais , Apetite , Feminino , Preferências Alimentares , Interações entre Hospedeiro e Microrganismos , Ácido Láctico/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Redes e Vias Metabólicas , Metabolômica , Consórcios Microbianos , Reprodução
3.
Elife ; 82019 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31226244

RESUMO

The regulation of feeding plays a key role in determining the fitness of animals through its impact on nutrition. Elucidating the circuit basis of feeding and related behaviors is an important goal in neuroscience. We recently used a system for closed-loop optogenetic manipulation of neurons contingent on the feeding behavior of Drosophila to dissect the impact of a specific subset of taste neurons on yeast feeding. Here, we describe the development and validation of this system, which we term the optoPAD. We use the optoPAD to induce appetitive and aversive effects on feeding by activating or inhibiting gustatory neurons in closed-loop - effectively creating virtual taste realities. The use of optogenetics allowed us to vary the dynamics and probability of stimulation in single flies and assess the impact on feeding behavior quantitatively and with high throughput. These data demonstrate that the optoPAD is a powerful tool to dissect the circuit basis of feeding behavior, allowing the efficient implementation of sophisticated behavioral paradigms to study the mechanistic basis of animals' adaptation to dynamic environments.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios/fisiologia , Optogenética , Paladar/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Percepção Gustatória/genética
4.
Elife ; 72018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393045

RESUMO

To optimize fitness, animals must dynamically match food choices to their current needs. For drosophilids, yeast fulfills most dietary protein and micronutrient requirements. While several yeast metabolites activate known gustatory receptor neurons (GRNs) in Drosophila melanogaster, the chemosensory channels mediating yeast feeding remain unknown. Here we identify a class of proboscis GRNs required for yeast intake. Within this class, taste peg GRNs are specifically required to sustain yeast feeding. Sensillar GRNs, however, mediate feeding initiation. Furthermore, the response of yeast GRNs, but not sweet GRNs, is enhanced following deprivation from amino acids, providing a potential basis for protein-specific appetite. Although nutritional and reproductive states synergistically increase yeast appetite, reproductive state acts independently of nutritional state, modulating processing downstream of GRNs. Together, these results suggest that different internal states act at distinct levels of a dedicated gustatory circuit to elicit nutrient-specific appetites towards a complex, ecologically relevant protein source.


Assuntos
Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Comportamento Alimentar , Proteostase , Receptores de Superfície Celular/fisiologia , Leveduras/metabolismo , Animais , Proteínas de Drosophila/fisiologia , Leveduras/química
5.
PLoS Biol ; 15(4): e2000862, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441450

RESUMO

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Assuntos
Acetobacter/fisiologia , Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Lactobacillus/fisiologia , Simbiose , Acetobacter/genética , Acetobacter/crescimento & desenvolvimento , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/fisiologia , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/deficiência , Animais , Animais Geneticamente Modificados , Regulação do Apetite , Comportamento Animal , Misturas Complexas/administração & dosagem , Misturas Complexas/química , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Feminino , Preferências Alimentares , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Oviposição , Especificidade da Espécie , Fermento Seco/química
6.
Genes Chromosomes Cancer ; 49(8): 746-59, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544848

RESUMO

It is unclear whether the mutation spectra in WNT genes vary among distinct types of colorectal tumors. We have analyzed mutations in specific WNT genes in a cohort of 52 colorectal tumors and performed a meta-analysis of previous studies. Notably, significant differences were found among the mutation spectra. We have previously shown that in familial adenomatous polyposis, APC somatic mutations are selected to provide the "just-right" level of WNT signaling for tumor formation. Here, we found that APC mutations encompassing at least two beta-catenin down-regulating motifs (20 a.a. repeats) are significantly more frequent in microsatellite unstable (MSI-H) than in microsatellite stable (MSS) tumors where truncations retaining less than two repeats are more frequent (P = 0.0009). Moreover, in cases where both APC hits are detected, selection for mutations retaining a cumulative number of two 20 a.a. repeats became apparent in MSI-H tumors (P = 0.001). This type of mutations were also more frequent in proximal versus distal colonic tumors, regardless of MSI status (P = 0.0008). Among MSI-H tumors, CTNNB1 mutations were significantly more frequent in HNPCC than in sporadic lesions (28% versus 6%, P < 10-6) and were preferentially detected in the proximal colon, independently of MSI status (P = 0.017). In conclusion, the observed spectra of WNT gene mutations in colorectal tumors are likely the result from selection of specific levels of beta-catenin signaling, optimal for tumor formation in the context of specific anatomical locations and forms of genetic instability. We suggest that this may underlie the preferential location of MMR deficient tumors in the proximal colon.


Assuntos
Neoplasias Colorretais/genética , Proteínas do Citoesqueleto/genética , Genes APC , Instabilidade de Microssatélites , Mutação/genética , Proteínas Wnt/genética , beta Catenina/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Proteína Axina , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Técnicas Imunoenzimáticas , Transdução de Sinais , beta Catenina/metabolismo
7.
Dis Colon Rectum ; 52(4): 742-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19404084

RESUMO

MYH-associated polyposis is an inherited autosomal recessive disease, linked to biallelic germline MYH mutations, which predisposes to the development of multiple colorectal adenomas and cancer. The colonic and extracolonic phenotype of this syndrome is very heterogeneous. We report the case of a young male patient with an aggressive MYH-associated polyposis phenotype. He presented at aged 30 years with more than 100 colonic polyps and 4 colonic adenocarcinomas. At aged 35 years, Spigelman Stage IV duodenal adenomatosis was detected. When he was 39 years old, he developed three synchronous jejunal adenocarcinomas and a mesenteric desmoid tumor. Based on this report, we believe that screening of the entire small bowel should be recommended in MYH-associated polyposis patients, especially in those with duodenal adenomas. Similar to patients with familial adenomatous polyposis, desmoid tumors also may be part of the clinical spectrum of MYH-associated polyposis and may prove to be a significant clinical problem in patients submitted to prophylactic colectomy.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Fibromatose Agressiva/genética , Neoplasias do Jejuno/genética , Neoplasias Primárias Múltiplas/genética , Neoplasias Peritoneais/genética , Adenocarcinoma/genética , Adenoma/genética , Adulto , DNA Glicosilases/genética , Neoplasias Duodenais/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Neoplasias Intestinais/genética , Obstrução Intestinal/etiologia , Neoplasias do Jejuno/complicações , Neoplasias Hepáticas/secundário , Masculino , Mesentério , Mutação , Fenótipo , Síndrome
8.
Acta Med Port ; 20(3): 243-7, 2007.
Artigo em Português | MEDLINE | ID: mdl-17868535

RESUMO

MYH-associated polyposis (MAP) is an autosomal recessive disease associated with multiple colonic adenomas and colorectal cancer. Y165C and G382D MYH missense mutations are involved in more than 80% of cases in Caucasians and the large series published do not include patients homozygous for other mutations. We present the report of two siblings homozygous for the nonsense frameshift mutation 1103delC. The proband aged 28 presented with four colonic adenocarcinomas and 20-30 synchronous adenomas. Her sister aged 24 had 20 colonic adenomas and a severe Spigelman's III duodenal adenomatosis. Their parents, aged 60 and 51, heterozygous for the 1103delC MYH mutation, presented 5 and 2 low risk colorectal adenomas, respectively.


Assuntos
Polipose Adenomatosa do Colo/genética , DNA Glicosilases/genética , Mutação , Adulto , Feminino , Homozigoto , Humanos , Linhagem , Fenótipo , Índice de Gravidade de Doença
9.
Cancer Genet Cytogenet ; 162(1): 68-73, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16157203

RESUMO

Although several genetic alterations have been identified in patients with ulcerative colitis (UC), it remains unclear whether these changes indicate an increased risk for malignancy. This paper analyzes the involvement of suppressor, mutator, and methylator pathways in malignant transformation associated with UC. A total of 60 colonic samples (47 affected non-neoplastic mucosa, 7 dysplasia, and 6 carcinoma) from 51 UC patients were analyzed for 22 microsatellite markers. p53 gene exons 5-8 were analyzed by single-strand conformational polymorphism, and APC gene by denaturing gradient gel electrophoresis (exons 1-14) and protein truncation test (exon 15). Methylation studies for MLH1 and CSPG2 genes were also performed. Microsatellite instability was absent in all samples whereas allelic imbalance (AI) and loss of heterozygosity (LOH) were detected mainly in samples with neoplastic transformation (P<0.0001). AI and/or LOH at loci located on chromosomes 5, 9, and 18 were significantly more frequent in neoplastic samples (P<0.01), as were TP53 gene mutations (P<0.007). A single mutation was detected for APC gene in a cancer sample. MLH1 gene methylation was absent in all analyzed samples, whereas CSPG2 gene methylation was detected in a single non-neoplastic sample. Our results suggest that the suppressor pathway plays the main role in UC associated tumorigenic progression. LOH at specific loci located on chromosomes 5, 9, and 18 appears to be specifically associated with malignancy risk.


Assuntos
Colite Ulcerativa/complicações , Neoplasias Colorretais/genética , Metilação de DNA , Genes Supressores de Tumor , Mutação , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Proteínas de Transporte , Transformação Celular Neoplásica , Proteoglicanas de Sulfatos de Condroitina/genética , Feminino , Genes APC , Genes p53 , Humanos , Perda de Heterozigosidade , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Versicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...