Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 749: 141364, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32836117

RESUMO

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.


Assuntos
COVID-19 , Gastroenteropatias , Diarreia , Fezes , Humanos , SARS-CoV-2
2.
Sci Total Environ ; 695: 133923, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31756855

RESUMO

Peri-urban aquacultures produce nutritious food in proximity to markets, but poor surface water quality in rapidly expanding megacities threatens their success in emerging economies. Our study compared, for a wide range of parameters, water quality downstream of Bangkok with aquaculture regulations and standards. For parameters not meeting those requirements, we sought to establish whether aquaculture practice or external factors were responsible. We applied conventional and advanced methods, including micropollutant analysis, genetic markers, and 16S rRNA amplicon sequencing, to investigate three family-owned aquacultures spanning extensive, semi-intensive and intensive practices. Canals draining the city of Bangkok did not meet quality standards for water to be used in aquaculture, and were sources for faecal coliforms, Bacteriodes, Prevotella, Human E. coli, tetracycline resistance genes, and nitrogen into the aquaculture ponds. Because of these inputs, aquacultures suffered algae blooms, with and without fertilizer and feed addition to the ponds. The aquacultures were sources of salinity and the herbicide diuron into the canals. Diuron was detectable in shrimp, but not at a level of concern to human health. Given the extent and nature of pollution, peri-urban water policy should prioritize charging for urban wastewater treatment over water fees for small-scale agricultural users. The extensive aquaculture attenuated per year an estimated twenty population equivalents of nitrogen pollution and trillions of faecal coliform bacteria inputs from the canal. Extensive aquacultures could thus contribute to peri-urban blue-green infrastructures providing ecosystem services to the urban population such as flood risk management, food production and water pollution attenuation.


Assuntos
Aquicultura , Monitoramento Ambiental , Poluição da Água/análise , Cidades , Tailândia , Poluição da Água/estatística & dados numéricos
3.
Water Res ; 160: 278-287, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31154125

RESUMO

Quantitative Structure Biodegradation Relationships (QSBRs) are a tool to predict the biodegradability of chemicals. The objective of this work was to generate reliable biodegradation data for mono-aromatic chemicals in order to evaluate and verify previously developed QSBRs models. A robust biodegradation test method was developed to estimate specific substrate utilization rates, which were used as a proxy for biodegradation rates of chemicals in pure culture. Five representative mono-aromatic chemicals were selected that spanned a wide range of biodegradability. Aerobic biodegradation experiments were performed for each chemical in batch reactors seeded with known degraders. Chemical removal, degrader growth and CO2 production were monitored over time. Experimental data were interpreted using a full carbon mass balance model, and Monod kinetic parameters (Y, Ks, qmax and µmax) for each chemical were determined. In addition, stoichiometric equations for aerobic mineralization of the test chemicals were developed. The theoretically estimated biomass and CO2 yields were similar to those experimentally observed; 35% (s.d ±â€¯8%) of the recovered substrate carbon was converted to biomass, and 65% (s.d ±â€¯8%) was mineralised to CO2. Significant correlations were observed between the experimentally determined specific substrate utilization rates, as represented by qmax and qmax/Ks, at high and low substrate concentrations, respectively, and the first order biodegradation rate constants predicted by a previous QSBR study. Similarly, the correlation between qmax and selected molecular descriptors characterizing the chemicals structure in a previous QSBR study was also significant. These results suggest that QSBR models can be reliable and robust in prioritising chemical half-lives for regulatory screening purposes.


Assuntos
Carbono , Biodegradação Ambiental , Biomassa , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...