Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 32(23): 3041-54, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24129513

RESUMO

Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.


Assuntos
Apoptose , Endodesoxirribonucleases/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Doença de Parkinson/patologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Idoso , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Dano ao DNA/genética , Dopamina/farmacologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Endodesoxirribonucleases/genética , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/citologia , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Substância Negra/metabolismo , Células Tumorais Cultivadas , alfa-Sinucleína/genética
2.
PLoS One ; 5(10): e13700, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21060871

RESUMO

BACKGROUND: Parkinson's disease is characterized by the presence of cytoplasmic inclusions, known as Lewy bodies, containing both aggregated α-synuclein and its interaction partner, synphilin-1. While synphilin-1 is known to accelerate inclusion formation by α-synuclein in mammalian cells, its effect on cytotoxicity remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: We expressed wild-type synphilin-1 or its R621C mutant either alone or in combination with α-synuclein in the yeast Saccharomyces cerevisiae and monitored the intracellular localization and inclusion formation of the proteins as well as the repercussions on growth, oxidative stress and cell death. We found that wild-type and mutant synphilin-1 formed inclusions and accelerated inclusion formation by α-synuclein in yeast cells, the latter being correlated to enhanced phosphorylation of serine-129. Synphilin-1 inclusions co-localized with lipid droplets and endomembranes. Consistently, we found that wild-type and mutant synphilin-1 interacts with detergent-resistant membrane domains, known as lipid rafts. The expression of synphilin-1 did not incite a marked growth defect in exponential cultures, which is likely due to the formation of aggresomes and the retrograde transport of inclusions from the daughter cells back to the mother cells. However, when the cultures approached stationary phase and during subsequent ageing of the yeast cells, both wild-type and mutant synphilin-1 reduced survival and triggered apoptotic and necrotic cell death, albeit to a different extent. Most interestingly, synphilin-1 did not trigger cytotoxicity in ageing cells lacking the sirtuin Sir2. This indicates that the expression of synphilin-1 in wild-type cells causes the deregulation of Sir2-dependent processes, such as the maintenance of the autophagic flux in response to nutrient starvation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that wild-type and mutant synphilin-1 are lipid raft interacting proteins that form inclusions and accelerate inclusion formation of α-synuclein when expressed in yeast. Synphilin-1 thereby induces cytotoxicity, an effect most pronounced for the wild-type protein and mediated via Sir2-dependent processes.


Assuntos
Proteínas de Transporte/fisiologia , Morte Celular , Proteínas do Tecido Nervoso/fisiologia , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , alfa-Sinucleína/metabolismo , Fosforilação
3.
Biochim Biophys Acta ; 1783(10): 1767-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18634833

RESUMO

Parkinson's disease is a neurodegenerative disorder characterized by the formation of Lewy bodies containing aggregated alpha-synuclein. We used a yeast model to screen for deletion mutants with mislocalization and enhanced inclusion formation of alpha-synuclein. Many of the mutants were affected in functions related to vesicular traffic but especially mutants in endocytosis and vacuolar degradation combined inclusion formation with enhanced alpha-synuclein-mediated toxicity. The screening also allowed for identification of casein kinases responsible for alpha-synuclein phosphorylation at the plasma membrane as well as transacetylases that modulate the alpha-synuclein membrane interaction. In addition, alpha-synuclein was found to associate with lipid rafts, a phenomenon dependent on the ergosterol content. Together, our data suggest that toxicity of alpha-synuclein in yeast is at least in part associated with endocytosis of the protein, vesicular recycling back to the plasma membrane and vacuolar fusion defects, each contributing to the obstruction of different vesicular trafficking routes.


Assuntos
Microdomínios da Membrana/metabolismo , Modelos Biológicos , Doença de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Caseína Quinases/genética , Caseína Quinases/metabolismo , Ergosterol/farmacologia , Mutação/genética , Doença de Parkinson/genética , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Especificidade por Substrato , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...