Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(44): 5731-5734, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742530

RESUMO

Gallium ion incorporation into silver indium gallium sulfide nanocrystals is investigated by various methods, including photoluminescence (PL) and X-ray photoelectron spectroscopy. The ZnS shell-growth enhances a PL quantum yield of up to 16%, with which the quantum dot light-emitting diode was successfully fabricated.

2.
Eur Heart J ; 42(41): 4264-4276, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279605

RESUMO

AIMS: Non-compaction cardiomyopathy is a devastating genetic disease caused by insufficient consolidation of ventricular wall muscle that can result in inadequate cardiac performance. Despite being the third most common cardiomyopathy, the mechanisms underlying the disease, including the cell types involved, are poorly understood. We have previously shown that endothelial cell-specific deletion of the chromatin remodeller gene Ino80 results in defective coronary vessel development that leads to ventricular non-compaction in embryonic mouse hearts. We aimed to identify candidate angiocrines expressed by endocardial and endothelial cells (ECs) in wildtype and LVNC conditions in Tie2Cre;Ino80fl/fltransgenic embryonic mouse hearts, and test the effect of these candidates on cardiomyocyte proliferation and maturation. METHODS AND RESULTS: We used single-cell RNA-sequencing to characterize endothelial and endocardial defects in Ino80-deficient hearts. We observed a pathological endocardial cell population in the non-compacted hearts and identified multiple dysregulated angiocrine factors that dramatically affected cardiomyocyte behaviour. We identified Col15a1 as a coronary vessel-secreted angiocrine factor, downregulated by Ino80-deficiency, that functioned to promote cardiomyocyte proliferation. Furthermore, mutant endocardial and endothelial cells up-regulated expression of secreted factors, such as Tgfbi, Igfbp3, Isg15, and Adm, which decreased cardiomyocyte proliferation and increased maturation. CONCLUSIONS: These findings support a model where coronary endothelial cells normally promote myocardial compaction through secreted factors, but that endocardial and endothelial cells can secrete factors that contribute to non-compaction under pathological conditions.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Animais , Endocárdio , Ventrículos do Coração , Camundongos , Miocárdio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...