Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(26): 16980-16988, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250356

RESUMO

We serendipitously found a mitochondrial uncoupler (mUncoupler), compound 1, in the process of screening for inhibitors of a gene product related to calorie restriction (CR) and longevity. Compound 1 has a unique 4-cyano-1,2,3-triazole structure which is different from any known mUncoupler and ameliorated HbA1c in Zucker diabetic fatty (ZDF) rats. However, its administration at high doses was not tolerated in an acute toxicity test in rats. We therefore tried to optimize cyanotriazole compound 1 and convert it into an agent that could be safely administered to patients with diabetes mellitus (DM) or metabolic disorders. Considering pharmacokinetic (PK) profiles, especially organ distribution targeting the liver and avoiding the brain, as well as acute toxicities and pharmacological effects of the derivatives, various conversions and substitutions at the 5-position on the cyanotriazole ring were carried out. These optimizing processes improved PK profiles and effectiveness, and acute toxicities became negligible even at high doses. We finally succeeded in developing an optimized compound, OPC-163493, as a liver-localized/targeted mUncoupler.

2.
Nat Commun ; 10(1): 2172, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092829

RESUMO

Inducing mitochondrial uncoupling (mUncoupling) is an attractive therapeutic strategy for treating metabolic diseases because it leads to calorie-wasting by reducing the efficiency of oxidative phosphorylation (OXPHOS) in mitochondria. Here we report a safe mUncoupler, OPC-163493, which has unique pharmacokinetic characteristics. OPC-163493 shows a good bioavailability upon oral administration and primarily distributed to specific organs: the liver and kidneys, avoiding systemic toxicities. It exhibits insulin-independent antidiabetic effects in multiple animal models of type I and type II diabetes and antisteatotic effects in fatty liver models. These beneficial effects can be explained by the improvement of glucose metabolism and enhancement of energy expenditure by OPC-163493 in the liver. Moreover, OPC-163493 treatment lowered blood pressure, extended survival, and improved renal function in the rat model of stroke/hypertension, possibly by enhancing NO bioavailability in blood vessels and reducing mitochondrial ROS production. OPC-163493 is a liver-localized/targeted mUncoupler that ameliorates various complications of diabetes.


Assuntos
Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Desacopladores/farmacologia , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , Células CHO , Cricetulus , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Feminino , Células Hep G2 , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/mortalidade , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Rim/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Análise de Sobrevida , Desacopladores/farmacocinética , Desacopladores/uso terapêutico
3.
Arch Biochem Biophys ; 491(1-2): 46-52, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19799852

RESUMO

The liver gluconeogenic pathway is recognized as a target for treating diabetes mellitus. In this study, we attempted to establish a new method to evaluate gluconeogenesis using rat H4IIE hepatoma cells. High-density preculture and exposure to hypertonic solutions, which are known to upregulate the expression of gluconeogenic genes, enhanced glucose release (GR) promoted by gluconeogenic substrates (GS: 1mM pyruvate and 10mM lactate). Our method was also applicable to the human hepatoma HepG2 cells. Measurement of glycogen content in HepG2 cells revealed that GR was compensated by glycogenolysis in the basal state and was generated by gluconeogenesis in the presence of GS. The optimized conditions increased the expression of gluconeogenic genes in HepG2 cells. Insulin and metformin dose-dependently inhibited GR and 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) increased it. These results suggest that the present method is useful to evaluate the effects of nutrients, hormones and hypoglycemic agents on hepatic gluconeogenesis.


Assuntos
Gluconeogênese , Hepatócitos/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Fluorometria , Gluconeogênese/efeitos dos fármacos , Glucose/biossíntese , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Ácido Láctico/metabolismo , Metformina/farmacologia , Ácido Pirúvico/metabolismo , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA