Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630388

RESUMO

The aim of this study was to explore the mechanism of antitumor effect of (E)-6-morpholino-9-(styrylsulfonyl)-9H-purine (6-Morpholino-SPD) and (E)-6-amino-9-(styrylsulfonyl)-9H-purine (6-Amino-SPD). The effects on apoptosis induction, mitochondrial potential, and accumulation of ROS in treated K562 cells were determined by flow cytometry. The RT-PCR method was used to measure the expression of Akt, CA IX, caspase 3, and cytochrome c genes, as well as selected miRNAs. Western blot analysis was used to determine the expression of Akt, cytochrome c, and caspase 3. The results demonstrate the potential of the tested derivatives as effective antitumor agents with apoptotic-inducing properties. In leukemic cells treated with 6-Amino-SPD, increased expression of caspase 3 and cytochrome c genes was observed, indicating involvement of the intrinsic mitochondrial pathway in the induction of apoptosis. Conversely, leukemic cells treated with 6-Morpholino-SPD showed reduced expression of these genes. The observed downregulation of miR-21 by 6-Morpholino-SPD may contribute to the induction of apoptosis and disruption of mitochondrial function. In addition, both derivatives exhibited increased expression of Akt and CA IX genes, suggesting activation of the Akt/HIF pathway. However, the exact mechanism and its relations to the observed overexpression of miR-210 need further investigation. The acceptable absorption and distribution properties predicted by ADMET analysis suggest favorable pharmacokinetic properties for these derivatives.


Assuntos
Leucemia , MicroRNAs , Humanos , Caspase 3/genética , Morfolinos , Citocromos c , Proteínas Proto-Oncogênicas c-akt , Leucemia/tratamento farmacológico , Leucemia/genética , MicroRNAs/genética
2.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298825

RESUMO

A series of tetracationic bis-triarylborane dyes, differing in the aromatic linker connecting two dicationic triarylborane moieties, showed very high submicromolar affinities toward ds-DNA and ds-RNA. The linker strongly influenced the emissive properties of triarylborane cations and controlled the fluorimetric response of dyes. The fluorene-analog shows the most selective fluorescence response between AT-DNA, GC-DNA, and AU-RNA, the pyrene-analog's emission is non-selectively enhanced by all DNA/RNA, and the dithienyl-diketopyrrolopyrrole analog's emission is strongly quenched upon DNA/RNA binding. The emission properties of the biphenyl-analog were not applicable, but the compound showed specific induced circular dichroism (ICD) signals only for AT-sequence-containing ds-DNAs, whereas the pyrene-analog ICD signals were specific for AT-DNA with respect to GC-DNA, and also recognized AU-RNA by giving a different ICD pattern from that observed upon interaction with AT-DNA. The fluorene- and dithienyl-diketopyrrolopyrrole analogs were ICD-signal silent. Thus, fine-tuning of the aromatic linker properties connecting two triarylborane dications can be used for the dual sensing (fluorimetric and CD) of various ds-DNA/RNA secondary structures, depending on the steric properties of the DNA/RNA grooves.


Assuntos
DNA , RNA de Cadeia Dupla , Dicroísmo Circular , DNA/química , Corantes , Pirenos
3.
Enzyme Microb Technol ; 168: 110257, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209508

RESUMO

Within the last decade, the field of bio-nanoengineering has achieved significant advances allowing us to generate, e.g., nanoscaled molecular machineries with arbitrary shapes. To unleash the full potential of novel methods such as DNA origami technology, it is important to functionalise complex molecules and nanostructures precisely. Thus, considerable attention has been given to site-selective modifications of proteins allowing further incorporation of various functionalities. Here, we describe a method for the covalent attachment of oligonucleotides to the glycosylated horseradish peroxidase protein (HRP) with high N-terminus selectivity and significant yield while conserving the enzymatic activity. This two-step process includes a pH-controlled metal-free diazotransfer reaction using imidazole-1-sulfonyl azide hydrogen sulfate, which at pH 8.5 results in an N-terminal azide-functionalized protein, followed by the Cu-free click SPAAC reaction to dibenzocyclooctyne- (DBCO) modified oligonucleotides. The reaction conditions were optimised to achieve maximum yield and the best performance. The resulting protein-oligonucleotide conjugates (HRP-DNA) were characterised by electrophoresis and mass spectrometry (MS). Native-PAGE experiments demonstrated different migration patterns for HRP-DNA and the azido-modified protein allowing zymogram experiments. Structure-activity relationships of novel HRP-DNA conjugates were assessed using molecular dynamics simulations, characterising the molecular interactions that define the structural and dynamical properties of the obtained protein-oligonucleotide conjugates (POC).


Assuntos
DNA , Oligonucleotídeos , Peroxidase do Rábano Silvestre/química
4.
Molecules ; 26(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34443404

RESUMO

Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.


Assuntos
Corantes/química , Cicloexanos/química , Corantes Fluorescentes/química , Fluorometria , Indóis/química , Alcinos/química , Aminoácidos/química , Azidas/química , Pirenos/química
5.
Chemistry ; 27(56): 14057-14072, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34327730

RESUMO

The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat1+ , Cat2+ , Cat(i)2+ , and Cat3+ . Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat1+ , Cat2+ , Cat(i)2+ , and Cat3+ with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.


Assuntos
DNA , RNA
6.
Artigo em Inglês | MEDLINE | ID: mdl-33709867

RESUMO

The synthesis of novel 6-chloro/morpholino/amino/-9-sulfonylpurine derivatives was accomplished in two ways, either (i) involving the condensation reaction of 6-chloropurine with commercially available arylsulfonyl chlorides in acetone and the presence of aqueous KOH at 0 °C, followed by the substitution of C6-chlorine with morpholine, or (ii) employing a reversed synthetic approach where 6-morpholinopurine and commercially available adenine bases were reacted with the corresponding alkyl, 2-arylethene and arylsulfonyl chlorides giving the N9 sulfonylated products, the latter particularly used where prior nonselective sulfonylation was observed. In both approaches, the sulfonylation reaction occurred regioselectively at the purine N9 position lacking any concurrent N7 derivatives, except in the case of a smaller methyl substituent on SO2 and the free amino group at C6 of the purine ring. The tautomeric features of initial N9 unsubstituted purines, as well as stability trends among the prepared N-9-sulfonylpurine derivates, were investigated using DFT calculations with an important conclusion that electron-donating C6 substituents are beneficial for the synthesis as they both promote the predominance of the desired N9 tautomers and help to assure the stability of the final products. The newly synthesized 6-morpholino and 6-amino-9-sulfonylpurine derivatives showed antiproliferative activity on human carcinoma, lymphoma, and leukemia cells. Among the tested compounds, 6-morpholino 17 and 6-amino 22 derivatives, with trans-ß-styrenesulfonyl group attached at the N9 position of purine, proved to be the most effective antiproliferative agents, causing accumulation of leukemia cells in subG0 cell cycle phase.


Assuntos
Antineoplásicos/farmacologia , Teoria da Densidade Funcional , Morfolinas/farmacologia , Purinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/química , Purinas/síntese química , Purinas/química
7.
Chemistry ; 27(16): 5142-5159, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33411942

RESUMO

We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.


Assuntos
DNA , RNA , Sítios de Ligação , Fluorometria , Modelos Moleculares
8.
Molecules ; 25(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392853

RESUMO

We synthesized a new amino acid-fluorescent nucleobase derivative (qAN1-AA) and from it two new fluorescent nucleobase-fluorophore (pyrene) conjugates, whereby only the analogue with the longer and more flexible linker (qAN1-pyr2) self-folded into intramolecularly stacked qAN1/pyrene conformation, yielding characteristic, 100 nm-red-shifted emission (λmax = 500 nm). On the contrary, the shorter and more rigid linker resulted in non-stacked conformation (qAN1-pyr1), characterized by the emission of free pyrene at λmax = 400 nm. Both fluorescent nucleobase-fluorophore (pyrene) conjugates strongly interacted with ds-DNA/RNA grooves with similar affinity but opposite fluorescence response (due to pre-organization), whereas the amino acid-fluorescent base derivative (qAN1-AA) was inactive. However, only intramolecularly self-folded qAN1-pyr2 showed strong fluorescence selectivity toward poly U (Watson-Crick complementary to qAN1 nucleobase) and poly A (reverse Hoogsteen complementary to qAN1 nucleobase), while an opposite emission change was observed for non-complementary poly G and poly C. Non-folded analogue (qAN1-pyr1) showed no ss-RNA selectivity, demonstrating the importance of nucleobase-fluorophore pre-organization.


Assuntos
DNA/química , Corantes Fluorescentes/química , Pirenos/química , Pirenos/síntese química , RNA/química , Dicroísmo Circular , Fluorescência , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Poli A/química , Poli C/química , Poli G/química , Poli U/química , RNA de Cadeia Dupla/química , Solventes/química , Espectrometria de Fluorescência , Água/química
9.
Chemistry ; 26(27): 6017-6028, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32104942

RESUMO

A bis-triarylborane tetracation (4-Ar2 B-3,5-Me2 C6 H2 )-C≡C-C≡C-(3,5-Me2 C6 H2 -4-BAr2 [Ar=(2,6-Me2 -4-NMe3 -C6 H2 )+ ] (24+ ) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5-(4-Ar2 B-3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 -4-BAr2 ) (34+ ). Single-crystal X-ray diffraction data on the neutral bis-triarylborane precursor 2 N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 24+ and indicated the importance of the properties of the linker connecting the two triarylboranes. Using the butadiyne rather than a bithiophene linker resulted in an opposite emission effect (quenching vs. enhancement), and 24+ bound to BSA 100 times stronger than 34+ . Moreover, 24+ interacted strongly with ss-RNA, and circular dichroism (CD) results suggest ss-RNA chain-wrapping around the rod-like bis-triarylborane dumbbell structure like a thread around a spindle, a very unusual mode of binding of ss-RNA with small molecules. Furthermore, 24+ yielded strong Raman/SERS signals, allowing DNA or protein detection at ca. 10 nm concentrations. The above observations, combined with low cytotoxicity, efficient human cell uptake and organelle-selective accumulation make such compounds intriguing novel lead structures for bio-oriented, dual fluorescence/Raman-based applications.


Assuntos
Butadienos/química , DNA/química , RNA/química , Dicroísmo Circular , Cristalografia por Raios X , Fluorescência , Fluorometria , Humanos , Estrutura Molecular
10.
Chemistry ; 26(10): 2098, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31990111

RESUMO

Invited for the cover of this issue are the groups of Todd B. Marder at the Julius-Maximilians-Universität Würzburg and Ivo Piantanida at the Ruder Boskovic Institute. The image depicts the molecular structure of a bis-triarylborane-based chromophore that is simultaneously detecting ds-DNA and proteins. Read the full text of the article at 10.1002/chem.201903936.


Assuntos
DNA , RNA , Fluorometria , Estrutura Molecular
11.
Chemistry ; 26(10): 2195-2203, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31756013

RESUMO

A water-soluble tetracationic quadrupolar bis-triarylborane chromophore showed strong binding to ds-DNA, ds-RNA, ss-RNA, as well as to the naturally most abundant protein, BSA. The novel dye can distinguish between DNA/RNA and BSA by fluorescence emission separated by Δ ν ˜ =3600 cm-1 , allowing for the simultaneous quantification of DNA/RNA and protein (BSA) in a mixture. The applicability of such fluorimetric differentiation in vitro was demonstrated, strongly supporting a protein-like target as a dominant binding site of 1 in cells. Moreover, our dye also bound strongly to ss-RNA, with the unusual rod-like structure of the dye, decorated by four positive charges at its termini and having a hydrophobic core, acting as a spindle for wrapping A, C and U ss-RNAs, but not poly G, the latter preserving its secondary structure. To the best of our knowledge, such unmatched, multifaceted binding activity of a small molecule toward DNA, RNA, and proteins and the selectivity of its fluorimetric and chirooptic response makes the quadrupolar bis-triarylborane a novel chromophore/fluorophore moiety for biochemical applications.


Assuntos
Boranos/química , DNA/análise , Corantes Fluorescentes/química , Fluorometria/métodos , RNA/análise , Soroalbumina Bovina/análise , Tiofenos/química , Sítios de Ligação , Boranos/metabolismo , Dicroísmo Circular , DNA/química , Corantes Fluorescentes/metabolismo , Simulação de Dinâmica Molecular , RNA/química , RNA de Cadeia Dupla/análise , RNA de Cadeia Dupla/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Temperatura , Tiofenos/metabolismo
12.
Org Biomol Chem ; 17(35): 8243-8258, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31464340

RESUMO

A set of styryl- and bis-styryl dyes, varying in length, aromatic surface, net positive charge and steric positioning or bulkiness of substituents, was tested for interactions with various ds-DNA or ds-RNA. Most of the compounds showed strong affinity toward ds-DNA/RNA, directly correlated to the synergistic contribution of the aromatic-conjugated surface and net positive charge. The volume or positioning of terminal aromatic substituents directly controlled the binding mode of the core structure, shifting between DNA/RNA groove binding or DNA/RNA intercalation. Consequently, upon binding to DNA/RNA the fluorimetric and induced CD (ICD) response varied for different compounds, for instance one derivative showed specific fluorescence increase with AT-DNA, while another derivative showed specific ICD response with AU-RNA. Preliminary screening on human tumour cell lines revealed an efficient cellular uptake for all dyes. Only mono-styryl-quinoline derivatives showed a strong antiproliferative activity combined with efficient fluorescent localisation, thus showing promising theragnostic potential, while other compounds were negligibly cytotoxic but still efficient fluorescent markers of cytoplasmic organelles.


Assuntos
DNA/química , Fluorescência , Corantes Fluorescentes/química , RNA/química , Estirenos/química , Sítios de Ligação , DNA/genética , Fluorometria , Humanos , Estrutura Molecular , RNA/genética
13.
J Trace Elem Med Biol ; 55: 216-222, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29066001

RESUMO

In an attempt to enhance the previously observed antiproliferative capacity of 1-(p-toluenesulfonyl)cytosine (N-1-tosylcytosine, ligand 1), its copper(II) complex (Cu(1-TsC-N3)2Cl2, complex 2) was prepared and tested in vitro on various carcinoma and leukemia cells. The comparative in vitro studies using the ligand 1, the complex 2, CuCl2x2H2O salt (salt 3) and the 1:2 mixture of the salt 3 and ligand 1 (mixture 4) were performed on normal (WI38), human carcinoma (HeLa, CaCo2, MiaPaCa2, SW620), lymphoma (Raji) and leukemia (K562) cell lines. Significantly elevated concentration of the intracellular copper after treatment of K562 cells and HeLa cells during 2h with complex 2 (7.83 vs. 5.4 times) was detected by atomic absorption spectroscopy. Cytotoxicity was analyzed by MTT assay. We found that antiproliferative capacity of the tested compounds varies (IC50 after 72h of exposure: 0.6×10-6M to>100×10-6M). Leukemia and lymphoma cells were found the most sensitive to complex 2 which showed more than 100 times higher in vitro activity against K562 cells than ligand 1. Apoptotic morphological changes, an externalization of phosphatydilserine, and changes in the mitochondrial membrane potential of treated cells were found. The caspase-3 activity in HeLa and K562 cells was measured by caspase-3 colorimetric assay kit. Caspase-3 was not activated in the treated K562 cells while salt 3 and the mixture 4 in the HeLa cells significantly increased tested enzyme activity. These findings suggest that copper(II) in the molecular complex 2 by improving entry of the N-1-tosylcytosine 1 into cells increases its antiproliferative capacity. In summary, the present study demonstrated that complex 2 possesses an antileukemic effect on K562 cells, and its anticancer activity was attributed with induction of apoptosis. The exact mechanism of apoptosis induction by complex 2 must be further investigated.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cobre/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Compostos de Tosil/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cobre/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células K562 , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-Atividade , Compostos de Tosil/química
14.
Curr Med Chem ; 26(30): 5609-5624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29737251

RESUMO

Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder - nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


Assuntos
Pesquisa Biomédica , DNA/química , RNA/química , Bibliotecas de Moléculas Pequenas/química , Animais , Humanos
15.
J Mass Spectrom ; 53(8): 655-664, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29739033

RESUMO

The novel N-1-sulfonylcytosine-cyclam conjugates 1 and 2 conjugates are ionized by electrospray ionization mass spectrometry (ESI MS) in positive and negative modes (ES+ and ES- ) as singly protonated/deprotonated species or as singly or doubly charged metal complexes. Their structure and fragmentation behavior is examined by collision induced experiments. It was observed that the structure of the conjugate dictated the mode of the ionization: 1 was analyzed in ES- mode while 2 in positive mode. Complexation with metal ions did not have the influence on the ionization mode. Zn2+ and Cu2+ complexes with ligand 1 followed the similar fragmentation pattern in negative ionization mode. The transformation from 2°-amine in 1 to 3°-amine of cyclam ring in 2 leads to the different fragmentation patterns due to the modification of the protonation priority which changed the fragmentation channels within the conjugate itself. Cu2+ ions formed complexes practically immediately, and the priority had the cyclam portion of the ligand 2. The structure of the formed Zn2+ complexes with ligand 2 depended on the number of 3° amines within the cyclam portion of the conjugate and the ratio of the metal:ligand used. The cleavage of the cyclam ring of metal complexes is driven by the formation of the fragment that suited the coordinating demand of the metal ions and the collision energy applied. Finally, it was shown that the structure of the cyclam conjugate dictates the fragmentation reactions and not the metal ions.

16.
Molecules ; 22(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236076

RESUMO

We demonstrate here for the first time that a guanidiniocarbonyl-pyrrole (GCP) unit can be applied for the fine recognition of single stranded RNA sequences-an intuitively unexpected result since so far binding of the GCP unit to ds-DNA or ds-RNA relied strongly on minor or major groove interactions, as shown in previous work. Two novel nucleobase-GCP isosteric conjugates differing in the flexibility of GCP unit revealed a fluorimetric recognition of various single stranded RNA, which could be additionally regulated by pH. The more rigid conjugate showed a specific fluorescence increase for poly A only at pH 7, whereby this response could be reversibly switched-off at pH 5. The more flexible derivative revealed selective fluorescence quenching by poly G at pH 7 but no change for poly A, whereas its recognition of poly AH⁺ can be switched-on at pH 5. The computational analysis confirmed the important role of the GCP fragment and its protonation states in the sensing of polynucleotides and revealed that it is affected by the intrinsic dynamical features of conjugates themselves. Both conjugates showed a negligible response to uracil and cytosine ss-RNA as well as ds-RNA at pH 7, and only weak interactions with ds-DNA. Thus, nucleobase-GCP conjugates can be considered as novel lead compounds for the design of ss-RNA or ss-DNA selective fluorimetric probes.


Assuntos
Fluorometria/métodos , Guanidinas/química , Sondas Moleculares/química , Pirróis/química , RNA/análise , DNA/química , Concentração de Íons de Hidrogênio , Poli A/análise , Poli G/análise , Soluções
17.
J Mass Spectrom ; 51(11): 998-1005, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27405069

RESUMO

The aim of this report is to present the electrospray ionization mass spectrometry results of the non-covalent interaction of two biologically active ligands, N-1-(p-toluenesulfonyl)cytosine, 1-TsC, 1 and N-1-methanesulfonylcytosine, 1-MsC, 2 and their Cu(II) complexes Cu(1-TsC-N3)2 Cl2 , 3 and Cu(1-MsC-N3)2 Cl2 and 4 with biologically important cations: Na+ , K+ , Ca2+ , Mg2+ and Zn2+ . The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1-4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Citosina/análogos & derivados , Citosina/química , Metais/química , Cátions/química , Complexos de Coordenação/química , Ligantes , Nitrogênio , Oxigênio , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...