Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1132561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424731

RESUMO

Red seaweed extracts have been shown to trigger the biotic stress tolerance in several crops. However, reports on transcriptional modifications in plants treated with seaweed biostimulant are limited. To understand the specific response of rice to blast disease in seaweed-biostimulant-primed and non-primed plants, transcriptomics of a susceptible rice cultivar IR-64 was carried out at zero and 48 h post inoculation with Magnaporthe oryzae (strain MG-01). A total of 3498 differentially expressed genes (DEGs) were identified; 1116 DEGs were explicitly regulated in pathogen-inoculated treatments. Functional analysis showed that most DEGs were involved in metabolism, transport, signaling, and defense. In a glass house, artificial inoculation of MG-01 on seaweed-primed plants resulted in the restricted spread of the pathogen leading to the confined blast disease lesions, primarily attributed to reactive oxygen species (ROS) accumulation. The DEGs in the primed plants were defense-related transcription factors, kinases, pathogenesis-related genes, peroxidases, and growth-related genes. The beta-D-xylosidase, a putative gene that helps in secondary cell wall reinforcement, was downregulated in non-primed plants, whereas it upregulated in the primed plants indicating its role in the host defense. Additionally, Phenylalanine ammonia-lyase, pathogenesis-related Bet-v-I family protein, chalcone synthase, chitinases, WRKY, AP2/ERF, and MYB families were upregulated in seaweed and challenge inoculated rice plants. Thus, our study shows that priming rice plants with seaweed bio-stimulants resulted in the induction of the defense in rice against blast disease. This phenomenon is contributed to early protection through ROS, protein kinase, accumulation of secondary metabolites, and cell wall strengthening.

2.
Microorganisms ; 11(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37110343

RESUMO

Effectors play an important role in host-pathogen interactions. Though an economically significant disease in rice, knowledge regarding the infection strategy of Rhizoctonia solani is obscure. In this study, we performed a genome-wide identification of the effectors in R. solani based on the characteristics of previously reported effector proteins. A total of seven novel effectors (designated as RS107_1 to RS107_7) in the disease mechanism of R. solani were identified and were predicted to be non-classically secreted proteins with functionally conserved domains. The function, reactivity, and stability of these proteins were evaluated through physiochemical characterization. The target proteins involved in the regulation of rice defense mechanisms were identified. Furthermore, the effector genes were cloned and RS107_6 (metacaspase) was heterologously expressed in Escherichia coli to obtain a purified protein of ~36.5 kDa. The MALD-TOF characterization confirmed that the protein belonged to a metacaspase of the Peptidase_C14 protein family, 906 bp in size, and encoded a polypeptide of 301 amino acids. These findings suggest that the identified effectors can potentially serve as a virulence factor and can be targeted for the management of sheath blight in rice.

3.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688770

RESUMO

Bacterial soft rot is one of the most devastating diseases and a major constraint encountered during carrot farming. Biological agents are the best eco-friendly alternatives to agrochemicals to manage soft rot disease to ensure environmental sustainability. In this study, about eight isolates of bacterial pathogen causing soft rot in carrots were collected from Karnataka, India. Based on the 16S rRNA sequencing the pathogen isolates causing soft rot of carrot were identified as Klebsiella variicola. The morphological characteristics of K. variicola was investigated under scanning electron microscopy. The pathogenicity assay showed that all eight isolates were pathogenic to the carrot. An in vitro and in planta assay of two novel strains of Bacillus velezensis (A6 and P42) against K. variicola indicated that both strains had strong antagonistic activity against all the pathogen strains. Furthermore, the volatile bioactive compounds produced by A6 and P42 strains were analyzed in GC-MS, which revealed the presence of 10 and 6 bioactive compounds in their culture filtrate, respectively, with antibacterial and antifungal properties. The present study suggests that both A6 and P42 strains of B. velezensis were antagonistic to K. variicola and can be used as biocontrol agents to manage soft rot diseases of carrot under field conditions.


Assuntos
Daucus carota , RNA Ribossômico 16S , Índia
4.
Sci Rep ; 12(1): 5993, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397672

RESUMO

Red seaweed-derived biostimulants facilitate plant health and impart protection against abiotic stress conditions by their bioactive compounds and plant nutrients. The potency of red seaweed biostimulants (LBS6 and LBD1) on rice cv. IR-64 in response to fungicides induced stress was investigated in this study. Foliar application of LBS6 maintained the stomatal opening and leaf temperature under the fungicidal stress condition. Reactive Oxygen Species (ROS) such as hydrogen peroxide and superoxide radicals were significantly reduced in LBS6-treated stressed plants. After applying seaweed biostimulants, ROS production was stabilized by antioxidants viz., CAT, APX, SOD, POD, and GR. LBS-6 application increased the Ca+ and K+ levels in the stressed plants, which perhaps interacted with ROS and stomatal opening signalling systems, respectively. In the rice plants, fungicidal stress elevated the expression of stress-responsive transcriptional factors (E2F, HSFA2A, HSFB2B, HSFB4C, HSFC1A, and ZIP12). A decline in the transcript levels of stress-responsive genes was recorded in seaweed treated plants. For the first time, we present an integrative investigation of physicochemical and molecular components to describe the mechanism by which seaweed biostimulants in rice improve plant health under fungicidal stress conditions.


Assuntos
Fungicidas Industriais , Oryza , Alga Marinha , Antioxidantes/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oryza/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Alga Marinha/metabolismo
5.
Mol Biol Rep ; 48(1): 467-474, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394228

RESUMO

The use of resistant (R) genes is the most effective strategy to manage bacterial leaf blight (BLB) disease of rice. Several attempts were made to incorporate R genes into susceptible rice cultivars using marker-assisted backcross breeding (MABB). However, MABB relies exclusively on PCR for foreground selection of R genes, which requires expensive equipment for thermo-cycling and visualization of results; hence, it is limited to sophisticated research facilities. Isothermal nucleic acid amplification techniques such as loop-mediated isothermal amplification (LAMP) assay do not require thermo-cycling during the assay. Therefore, it will be the best alternative to PCR-based genotyping. In this study, we have developed a LAMP assay for the specific and sensitive genotyping of seven BLB resistance (R) genes viz., Xa1, Xa3, Xa4, Xa7, Xa10, Xa11, and Xa21 in rice. Gene-specific primers were designed for the LAMP assay. The LAMP assay was optimized for time, temperature, and template DNA concentration. For effective detection, incubation at 60 °C for 30 min was optimum for all seven R genes. A DNA intercalating dye ethidium bromide and a calorimetric dye hydroxynaphthol blue was used for result visualization. Further, sensitivity assay revealed that the LAMP assay could detect R genes at 100 fg of template DNA compared to 1 ng and 10 pg, respectively, in conventional PCR and q-PCR assays. The LAMP assay developed in this study provides a simple, specific, sensitive, robust, and cost-effective method for foreground selection of R genes in the resistance breeding programs of resource-poor laboratory.


Assuntos
Resistência à Doença/genética , Genes vpr/genética , Oryza/genética , Doenças das Plantas/genética , Genótipo , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...