Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133070, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278071

RESUMO

Acidophiles play a key role in the generation, evolution and attenuation of acid mine drainage (AMD), which is characterized by strong acidity (pH<3.5) and high metal concentrations. In this study, the seasonal changes of acidophilic communities and their roles in elemental cycling in an AMD lake (pH∼3.0) in China were analyzed through metagenomics. The results showed eukaryotic algae thrived in the lake, and Coccomyxa was dominant in January (38.1%) and May (33.9%), while Chlorella in July (9.5%). The extensive growth of Chlamydomonas in December (22.7%) resulted in an ultrahigh chlorophyll a concentration (587 µg/L), providing abundant organic carbon for the ecosystem. In addition, the iron-oxidizing and nitrogen-fixing bacterium Ferrovum contributed to carbon fixation. Ammonia oxidation likely occurred in the acidic lake, as was revealed by archaea Ca. Nitrosotalea. To gain a competitive advantage in the nutrient-poor environment, some acidophiles exhibited facultative characteristics, e.g. the most abundant bacterium Acidiphilium utilized both organic and inorganic carbon, and obtained energy from organic matter, inorganic sulfur, and sunlight simultaneously. It was suggested that sunlight, rather than chemical energy of reduced iron-sulfur was the major driver of elemental cycling in the AMD lake. The results are beneficial to the development of bioremediation strategies for AMD.


Assuntos
Chlorella , Ecossistema , Lagos , Clorofila A , Archaea/genética , Ferro , Ácidos , Enxofre , Carbono
2.
Microorganisms ; 9(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946065

RESUMO

The reclamation of mine dump is largely centered on the role played by microorganisms. However, the succession of microbial community structure and function in ecological restoration of the mine soils is still poorly understood. In this study, soil samples with different stacking time were collected from the dump of an iron mine in China and the physicochemical characteristics and microbial communities of these samples were comparatively investigated. The results showed that the fresh bare samples had the lowest pH, highest ion concentration, and were the most deficient in nutrients while the acidity and ion concentration of old bare samples decreased significantly, and the nutritional conditions improved remarkably. Vegetated samples had the weakest acidity, lowest ion concentration, and the highest nutrient concentration. In the fresh mine soils, the iron/sulfur-oxidizers such as Acidiferrobacter and Sulfobacillus were dominant, resulting in the strongest acidity. Bacteria from genera Acidibacter, Metallibacterium, and phyla Cyanobacteria, WPS-2 were abundant in the old bare samples, which contributed to the pH increase and TOC accumulation respectively. Acidobacteriota predominated in the vegetated samples and promoted nutrient enrichment and plant growth significantly. The microbial diversity and evenness of the three types of soils increased gradually, with more complex microbial networks, suggesting that the microbial community became more mature with time and microorganisms co-evolved with the mine soils.

3.
Sci Total Environ ; 791: 148108, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126487

RESUMO

Badain Jaran Desert (BJD), characterized by extremely arid climate and tallest sand dunes in the world, is the second largest desert in China. Surprisingly, there are a large number of permanent lakes in this desert. At present, little is known about the composition and distribution of microbial communities in these desert lakes, which are an important bioresource and play a fundamental role in the elemental cycles of the lakes. In this study, the physicochemical characteristics and microbial communities of water samples from 15 lakes in BJD were comparatively investigated. The results showed that the lakes were rich in Na+, Cl-, CO32- and HCO3- while Ca2+ and Mg2+ were scarce, with pH 8.52-10.27 and salinity 1.05-478.70 g/L. Bacteria dominated exclusively in low saline lakes (salinity < 50 g/L) while archaea were predominant in hypersaline lakes (salinity > 250 g/L), which abundance increased along salinity gradient linearly. Genera Flavobacterium, Synechocystis and Roseobacter from phyla Bacteroidetes, Cyanobacteria, Alphaproteobacteria were the major members in low saline lakes whereas Halomonas, Aliidiomarina and Halopelagius from Gammaproteobacteria and Euryarchaeota were abundant in moderately saline lakes (salinity 50-250 g/L). The hypersaline lakes were predominated by extreme halophiles such as Halorubrum, Halohasta and Natronomonas from Euryarchaeota. The correlation among the microbes in the lakes was mainly positive, suggesting they can survive in the harsh environments through synergistic interactions. Statistical analyses indicated that physicochemical characteristics rather than spatial factors shaped the microbial communities in the desert lakes. The pH was the most important environmental factor controlling alpha diversity, while salinity was the major driver determining microbial community structure in BJD lakes. In contrast, geographic factors had no significant impact on the microbial community compositions.


Assuntos
Lagos , Microbiota , Biodiversidade , China , Concentração de Íons de Hidrogênio , Filogenia , Salinidade
4.
Environ Pollut ; 268(Pt A): 115826, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160735

RESUMO

Acid mine drainage (AMD) is generated by the bio-oxidation of sulfide minerals. To understand the AMD formation and evolution, it is necessary to determine the composition and variation of acidophilic community, and their role in AMD ecosystem. In this study, we compared seasonal variations of geochemistry and microbial composition of two adjacent AMD lakes with different formation histories in Anhui Province, China. Lake Paitu (PT) formed in 1970s near a mine dump and the pH was in the range of 3.01-3.16, with the lowest in spring and summer while the highest in winter. The main ions in PT were Al and SO42-, whereas Fe concentration was relatively low. The concentrations of these ions were the lowest in summer and the highest in winter. Lake Tafang (TF) formed in around 2013 in a pit was more acidic (pH 2.43-2.75), but the seasonal variation of pH was the same as PT. Compared with Lake PT, TF had higher Fe, lower Al and SO42- concentrations, and showed no significant seasonal changes. Despite salient seasonal variations of prokaryotic composition in Lake PT, Ferrovum was the major iron-oxidizing bacterium in most seasons. Furthermore, Lake PT was also rich in heterotrophic bacteria (48.6 ± 15.9%). Both prokaryotic diversity and evenness of Lake TF were lower than PT, and chemolithotrophic iron-oxidizing bacteria (71.7 ± 25.4%) were dominant in almost all samples. Besides Ferrovum, more acid tolerant iron-oxidizer Leptospirillum and Acidithiobacillus were also abundant in Lake TF. Chlamydomonas was the major eukaryote in Lake PT and it flourished repeatedly at the end of December, causing an extremely high chlorophyll a concentration (587 µg/L) at one sampling site in 2016, which provided rich nutrients for heterotrophic bacteria. The main alga in Lake TF was Chrysonebula, but its concentration was low, apparently because of the strong acidity and dark red color of lake water.


Assuntos
Lagos , Microbiota , China , Clorofila A , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...