Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 387(2): 281-8, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11370852

RESUMO

Lysine 2,3-aminomutase catalyzes the interconversion of L-lysine and L-beta-lysine. 4-Thia-L-lysine (4-thialysine) is an alternative substrate for Lysine 2,3-aminomutase. The organic free radical that appears in the steady state of the reaction of 4-thialysine is structurally analogous to the first lysine-based radical in the chemical mechanism (Wu, W., Lieder, K. W., Reed, G. H., and Frey, P. A. (1995) Biochemistry 34, 10532-10537). 4-Thialysine is a much more potent inhibitor of the reaction of lysine than would be anticipated on the basis of the value of Km for its reaction as a substrate. 4-Thialysine is here shown to be a competitive reversible inhibitor with respect to L-lysine, displaying an inhibition constant of 0.12 +/- 0.01 mM. The value of Km for 4-thialysine is 1.4 +/- 0.1 mM, and the maximum velocity Vm = 0.19 +/-0.02 micromol min(-1) mg-1 at 37 degrees C and pH 8.0. The kinetic parameters for the reaction of lysine under the same conditions are: Km = 4.2 +/- 0.5 mM and Vm = 43 +/- 1 micromol min(-1) mg(-1). The discrepancy between Km and the apparent Ki for 4-thialysine arises from the fact that the maximal velocity for 4-thialysine is only 0.44% that for L-lysine. The electron paramagnetic resonance spectra of the organic radical generated at the active site from 4-thialysine and those generated from deuterium and 3-13C-labeled forms of 4-thialysine were analyzed by simulation. Based on the resulting hyperfine splitting constants, the conformation and distribution of the unpaired spin of the radical at the active site were evaluated.


Assuntos
Cisteína/química , Cisteína/metabolismo , Radicais Livres/química , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/metabolismo , Ligação Competitiva/efeitos dos fármacos , Clostridium , Cisteína/análogos & derivados , Cisteína/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática/efeitos dos fármacos , Radicais Livres/análise , Transferases Intramoleculares/química , Lisina/química , Lisina/metabolismo , Lisina/farmacologia , Conformação Molecular
2.
Biochemistry ; 40(16): 5056-64, 2001 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11305922

RESUMO

Cobalamin-dependent methionine synthase (MetH) catalyzes the methylation of homocysteine using methyltetrahydrofolate as the methyl donor. The cobalamin cofactor serves as an intermediate carrier of the methyl group from methyltetrahydrofolate to homocysteine. In the two half-reactions that comprise turnover for MetH, the cobalamin is alternatively methylated by methyltetrahydrofolate and demethylated by homocysteine to form methionine. Upon binding to the protein, the usual dimethylbenzimidazole ligand is replaced by the imidazole side chain of His759 [Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Ludwig, M. L. (1994) Science 266, 1669-1674]. Despite the ligand replacement that accompanies binding of cobalamin to the holo-MetH protein, a MetH(2-649) fragment of methionine synthase that contains the regions that bind homocysteine and methyltetrahydrofolate utilizes exogenously supplied cobalamin in methyl transfer reactions akin to those of the catalytic cycle. However, the interactions of MetH(2-649) with endogenous cobalamin are first order in cobalamin, while the half-reactions catalyzed by the holoenzyme are zero order in cobalamin, so rate constants for reactions of bound and exogenous cobalamins cannot be compared. In this paper, we investigate the catalytic rate enhancements generated by binding cobalamin to MetH after dividing the protein in half and reacting MetH(2-649) with a second fragment, MetH(649-1227), that harbors the cobalamin cofactor. The second-order rate constant for demethylation of methylcobalamin by Hcy is elevated 60-fold and that for methylation of cob(I)alamin is elevated 120-fold. Thus, binding of cobalamin to MetH is essential for efficient catalysis.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/química , Vitamina B 12/análogos & derivados , Vitamina B 12/química , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Sítios de Ligação/genética , Catálise , Ativação Enzimática/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Vetores Genéticos , Homocisteína/química , Cinética , Metilação , Mutagênese Insercional , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato/genética
3.
Biochemistry ; 40(1): 9-14, 2001 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-11141051

RESUMO

The mechanism of propagation of the radical center between the cofactor, substrate, and product in the adenosylcobalamin- (AdoCbl) dependent reaction of ethanolamine ammonia-lyase has been probed by pulsed electron nuclear double resonance (ENDOR) spectroscopy. The radical of S-2-aminopropanol, which appears in the steady state of the reaction, was used in ENDOR experiments to determine the nuclear spin transition frequencies of (2)H introduced from either deuterated substrate or deuterated coenzyme and of (13)C introduced into the ribosyl moiety of AdoCbl. A (2)H doublet (1.4 MHz splitting) was observed centered about the Larmor frequency of (2)H. Identical ENDOR frequencies were observed for (2)H irrespective of its mode of introduction into the complex. A (13)C doublet ENDOR signal was observed from samples prepared with [U-(13)C-ribosyl]-AdoCbl. The (13)C coupling tensor obtained from the ENDOR powder pattern shows that the (13)C has scalar as well as dipole-dipole coupling to the unpaired electron located at C1 of S-2-aminopropanol. The dipole-dipole coupling is consistent with a distance of 3.4+/-0.2 A between C1 of the radical and C5' of the labeled cofactor component. These results establish that the C5' carbon of the 5'-deoxyadenosyl radical moves approximately 7 A from its position as part of AdoCbl to a position where it is in contact with C1 of the substrate which lies approximately 12 A from the Co(2+) of cob(II)alamin. These findings are also consistent with the contention that 5'-deoxyadenosine is the sole mediator of hydrogen transfers in ethanolamine ammonia-lyase.


Assuntos
Desoxiadenosinas/química , Etanolamina Amônia-Liase/química , Sítios de Ligação , Isótopos de Carbono , Cobamidas/química , Deutério , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Propanolaminas/química , Especificidade por Substrato
4.
Biochemistry ; 39(39): 12069-75, 2000 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-11009622

RESUMO

Transient phases of the reaction catalyzed by ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been investigated by stopped-flow visible spectrophotometry and deuterium kinetic isotope effects. The cleavage of adenosylcobalamin (coenzyme B(12)) to form cob(II)alamin (B(12r)) with ethanolamine as the substrate occurred within the dead time of the instrument whenever coenzyme B(12) was preincubated with enzyme prior to mixing with substrate. The rate was, however, slowed sufficiently to be measured with perdeutero ethanolamine as the substrate. Optical spectra indicate that, during the steady states of the reactions with ethanolamine and with S-2-aminopropanol as substrates, approximately 90% of the active sites contain B(12r). Reformation of the carbon-cobalt bond of the cofactor occurs following depletion of substrate in the reaction mixtures, and the rate constant for this process reflects k(cat) of the respective substrates. This late phase of the reaction also exhibits (2)H isotope effects similar to those measured for the overall reaction with (2)H-labeled substrates. With unlabeled substrates, the rate of cofactor reassembly is independent of the number of substrate molecules turned over in the steady-state phase. However, with (2)H-labeled substrates, kinetic isotope effects appear in the reassembly phase, and these isotope effects are maximal after only approximately 2 equiv of substrate/active site are processed. With 5'-deuterated coenzyme B(12) and deuterated substrate, the isotope effect on reassembly is independent of the number of substrate molecules that are turned over. These results indicate that the pool of exchangeable hydrogens in the enzyme-cofactor complex is two-a finding consistent with the hydrogens in the C5' methylene of coenzyme B(12).


Assuntos
Coenzimas/química , Deutério/química , Etanolamina Amônia-Liase/química , Hidrogênio , Catálise , Cobamidas/química , Cobamidas/metabolismo , Coenzimas/metabolismo , Deutério/metabolismo , Transporte de Elétrons , Etanolamina Amônia-Liase/metabolismo , Cinética , Modelos Químicos , Espectrofotometria , Especificidade por Substrato , Trítio
5.
Biochemistry ; 39(31): 9561-70, 2000 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-10924153

RESUMO

An analogue of lysine, trans-4,5-dehydro-L-lysine (trans-4, 5-dehydrolysine), is a potent inhibitor of lysine 2,3-aminomutase from Clostridium subterminale SB4 that competes with L-lysine for binding to the active site. Inclusion of trans-4,5-dehydrolysine with activated enzyme and the coenzymes pyridoxal-5'-phosphate and S-adenosylmethionine, followed by freezing at 77 K, produces an intense signal in the electron paramagnetic resonance (EPR) spectrum at g 2.0, which is characteristic of an organic radical. A series of deuterated and (15)N-labeled samples of trans-4,5-dehydrolysine were synthesized and used to generate the EPR signal. Substitution of deuterium for hydrogen at C2, C3, C4, C5, and C6 of trans-4, 5-dehydrolysine led to significant simplifications and narrowing of the EPR signal, showing that the unpaired electron was located on the carbon skeleton of 4,5-trans-4,5-dehydrolysine. The hyperfine splitting pattern is simplified by use of 4,5-dehydro[3, 3-(2)H(2)]lysine or 4,5-dehydro[4,5-(2)H(2)]lysine, and it is dramatically simplified with 4,5-dehydro-[3,3,4,5,6,6-(2)H(6)]lysine. Spectral simulations show that the EPR signal arises from the allylic radical resulting from the abstraction of a hydrogen atom from C3 of trans-4,5-dehydrolysine. This radical is an allylic analogue of the substrate-related radical in the rearrangement mechanism postulated for this enzyme. The rate constant for formation of the 4,5-dehydrolysyl radical (2 min(-)(1)) matches that for the decrease in the concentration of [4Fe-4S](+), showing that the two processes are coupled. The cleavage of S-adenosylmethionine to 5'-deoxyadenosine and methionine takes place with a rate constant of approximately 5 min(-)(1). These kinetic correlations support the hypothesis that radical formation results from a reversible reaction between [4Fe-4S](+) and S-adenosylmethionine at the active site to form [4Fe-4S](2+), the 5'-deoxyadenosyl radical, and methionine as intermediates.


Assuntos
Transferases Intramoleculares/química , Lisina/análogos & derivados , Lisina/química , Sítios de Ligação , Catálise , Clostridium/enzimologia , Deutério/química , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/química , Estabilidade Enzimática , Radicais Livres/química , Hidrólise , Transferases Intramoleculares/antagonistas & inibidores , Lisina/síntese química , Conformação Molecular , S-Adenosilmetionina/química , Especificidade por Substrato
6.
Biochemistry ; 39(20): 6250-7, 2000 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-10821701

RESUMO

The hydrate of glycolaldehyde is a substrate analogue that induces the formation of cob(II)alamin and 5'-deoxyadenosine from adenosylcobalamin at the active site of dioldehydrase, and the resulting complex is inactive. The carbon atoms of glycolaldehyde hydrate remain bound to this complex, and it has been postulated that the first step or steps of the catalytic process on glycolaldehyde hydrate generate an intermediate that undergoes a destructive side reaction leading to inactivation of the enzyme [Wagner, O. W., Lee, H. A., Jr., Frey, P. A., and Abeles, R. H. (1966) J. Biol. Chem. 249, 1751-1762]. All evidence suggests that dioldehydrase reaction proceeds by a radical mechanism, and the glycolaldehyde hydrate is expected to be converted initially into a radical. Electron paramagnetic resonance (EPR) spectroscopic analysis of the inactivated complex shows that glycolaldehyde is transformed into a cis-ethanesemidione radical that is weakly spin-coupled to the cob(II)alamin in the active site of the enzyme. This radical has been identified by analysis of EPR spectra obtained from samples with (13)C- and (2)H-labeled forms of glycolaldehyde. The analysis shows that the stable radical associated with the inactive complex is symmetrical and that it contains a single solvent-exchangeable proton, consistent with a cis-ethanesemidione. Glycolaldehyde also inactivates ethanolamine ammonia-lyase (EAL). EPR studies of ethanolamine ammonia-lyase reveal that treatment with glycolaldehyde also results in formation of an ethanesemidione radical bound in the active site. The suicide inactivation in both enzymatic reactions is postulated to result from formation of this stable radical, which cannot react further to abstract a hydrogen atom from 5'-deoxyadenosine. Analysis of the electron spin-spin coupling between the semidione radicals and cob(II)alamin in both enzymes indicates that the distance between the radical and Co(2+) is approximately 11 A in each case.


Assuntos
Acetaldeído/análogos & derivados , Inibidores Enzimáticos/química , Etanolamina Amônia-Liase/química , Propanodiol Desidratase/química , Acetaldeído/química , Cobalto/química , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Radicais Livres/química , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular , Propanodiol Desidratase/antagonistas & inibidores , Propilenoglicol/química , Salmonella typhimurium/enzimologia , Solventes , Marcadores de Spin , Especificidade por Substrato
7.
Biochemistry ; 38(38): 12394-402, 1999 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-10493807

RESUMO

A study has been made of the mechanism of inactivation of the adenosylcobalamin-dependent enzyme, ethanolamine ammonia-lyase (EAL), by hydroxyethylhydrazine. Incubation of EAL with adenosylcobalamin and hydroxyethylhydrazine, an analogue of ethanolamine, leads to rapid and complete loss of enzymic activity. Equimolar quantities of 5'-deoxyadenosine, cob(II)alamin (B(12r)), hydrazine cation radical, and acetaldehyde are products of the inactivation. Inactivation is attributed to the tight binding of B(12r) in the active site. Removal of B(12r) from the protein by ammonium sulfate precipitation under acidic conditions, however, restores significant activity. This inactivation event has also been monitored by electron paramagnetic resonance (EPR) spectroscopy. In addition to EPR signals associated with B(12r), spectra of samples of inactivation mixtures reveal the presence of another radical. The other radical is bound in the active site where it undergoes weak magnetic interactions with the low spin Co(2+) in B(12r). The radical species was unambiguously identified as a hydrazine cation radical by using [(15)N(2)]hydroxyethylhydrazine, (2)H(2)O, and quantitative interpretation of the EPR spectra. Homolytic fragmentation of a hydroxyethylhydrazine radical to acetaldehyde and a hydrazine cation radical is consistent with all of the observations. All of the experiments indicate that the mechanism-based inactivation of EAL by hydroxyethylhydrazine results from irreversible cleavage of the cofactor and tight binding of B(12r) to the active site.


Assuntos
Inibidores Enzimáticos/química , Etanolamina Amônia-Liase/antagonistas & inibidores , Etanolamina Amônia-Liase/metabolismo , Hidrazinas/química , Sítios de Ligação , Cátions , Cobamidas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Hidrazinas/metabolismo , Cinética , Salmonella typhimurium/enzimologia , Solventes , Marcadores de Spin
8.
Biochemistry ; 38(38): 12403-7, 1999 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-10493808

RESUMO

The early steps in the single turnover inactivation of ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium by hydroxyethylhydrazine (HEH) have been probed by rapid-mixing sampling techniques, and the destiny of deuterium atoms, present initially in HEH, has been investigated by mass spectrometry. The inactivation reaction produces acetaldehyde, the hydrazine cation radical, 5'-deoxyadenosine, and cob(II)alamin (B(12r)) in amounts stoichiometric with active sites. Rapid-mix freeze-quench EPR spectroscopy and stopped-flow rapid-scan spectrophotometry revealed that the hydrazine cation radical and B(12r) appeared at a rate of approximately 3 s(-)(1) at 21 degrees C. Analysis of 5'-deoxyadenosine isolated from a reaction mixture prepared in (2)H(2)O did not contain deuterium-a result which demonstrates that solvent-exchangeable sites are not involved in the hydrogen-transfer processes. In contrast, all of the 5'-deoxyadenosine, isolated from inactivation reactions with [1,1,2,2-(2)H(4)]HEH, had acquired at least one (2)H from the labeled inactivator. Significant fractions of the 5'-deoxyadenosine acquired two and three deuteriums. These results indicate that hydrogen abstraction from HEH by a radical derived from the cofactor is reversible. The distribution of 5'-deoxyadenosine with one, two, and three deuteriums incorporated and the absence of unlabeled 5'-deoxyadenosine in the product are consistent with a model in which there is direct transfer of hydrogens between the inactivator and the 5'-methyl of 5'-deoxyadenosine. These results reinforce the concept that the 5'-deoxyadenosyl radical is the species that abstracts hydrogen atoms from the substrate in EAL.


Assuntos
Desoxiadenosinas/metabolismo , Inibidores Enzimáticos/química , Etanolamina Amônia-Liase/antagonistas & inibidores , Hidrazinas/química , Hidrogênio/metabolismo , Desoxiadenosinas/química , Deutério/química , Inibidores Enzimáticos/metabolismo , Etanolamina Amônia-Liase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidrazinas/metabolismo , Hidrogênio/química , Cinética , Prótons , Salmonella typhimurium/enzimologia , Espectrofotometria , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo
9.
Arch Biochem Biophys ; 370(1): 138-41, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10496987

RESUMO

Ethanolamine ammonia-lyase (EAL, EC 4.3.1.7) catalyzes a coenzyme B(12)-dependent deamination of vicinal amino alcohols. The mode of binding of coenzyme B(12) to EAL has been investigated by electron paramagnetic resonance spectroscopy (EPR) using [(15)N]-dimethylbenzimidazole-coenzyme B(12). EAL was incubated with either unlabeled or (15)N-enriched coenzyme B(12) and then either exposed to light or treated with ethanol to generate the cleaved form of the cofactor, cob(II)alamin (B(12r)) bound in the active site. The reaction mixtures were examined by EPR spectroscopy at 77 K. (15)N superhyperfine splitting in the EPR signals of the low-spin Co(2+) of B(12r), bound in the active site of EAL, indicates that the dimethylbenzimidazole moiety of the cofactor contributes the lower axial ligand consistent with "base-on" binding of coenzyme B(12) to EAL.


Assuntos
Cobamidas/metabolismo , Etanolamina Amônia-Liase/química , Etanolamina Amônia-Liase/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacocinética , Sítios de Ligação , Cobalto , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Isótopos de Nitrogênio , Especificidade por Substrato
10.
Biochemistry ; 35(49): 15846-56, 1996 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-8961949

RESUMO

The lipopolysaccharide of Yersinia pseudotuberculosis V includes a 3,6-dideoxyhexose, ascarylose, as the nonreducing end of the O-antigen tetrasaccharide. The C-3 deoxygenation of CDP-6-deoxy-L-threo-D-glycero-4-hexulose is a critical reaction in the biosynthesis of ascarylose. The first half of the reaction is a dehydration catalyzed by CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1), which is PMP-dependent and contains a redox-active [2Fe-2S] center. The second half is a reduction that requires an additional enzyme, CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3, formerly known as CDP-6-deoxy-delta 3,4-glucoseen reductase), which has a FAD and a [2Fe-2S] center in the active site. Using NADH as the reductant in the coupled E1-E3 reaction, we have monitored the kinetics of a radical intermediate using both stopped-flow spectrophotometry and rapid freeze-quench EPR under aerobic and hypoxic conditions. In the EPR studies, a sharp signal at g = 2.003 was found to appear at a rate which is kinetically competent, reaching its maximum intensity at approximately 150 ms. Stopped-flow UV-vis analysis of the reaction elucidated a minimum of six optically distinguishable states in the mechanism of electron transfer from NADH to substrate. Interestingly, one of the detected intermediates has a time course nearly identical to that of the radical detected by rapid freeze-quench EPR. The difference UV-vis spectrum of this intermediate displays a maximum at 456 nm with a shoulder at 425 nm. Overall, these results are consistent with an electron transfer pathway that includes a radical intermediate with the unpaired spin localized on the substrate-cofactor complex. Evidence in support of this mechanism is presented in this report. These studies add the PMP-glucoseen radical to the growing list of mechanistically important bioorganic radical intermediates that have recently been discovered.


Assuntos
Hexoses/biossíntese , Yersinia pseudotuberculosis/enzimologia , Yersinia pseudotuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Cistina Difosfato/análogos & derivados , Cistina Difosfato/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Cinética , Lipopolissacarídeos/química , Modelos Químicos , Estrutura Molecular , NAD/metabolismo , Antígenos O/química , Oxirredutases/metabolismo , Espectrofotometria
11.
Biochemistry ; 35(29): 9488-95, 1996 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-8755728

RESUMO

Human ferredoxin, the human equivalent of bovine adrenodoxin, is a small iron-sulfur protein with one [2Fe-2S] cluster. It functions, as do other vertebrate ferredoxins, to transfer electrons during the processes of steroid hormone synthesis. A DNA fragment encoding the mature form of human ferredoxin was cloned into an expression vector under control of the T7 RNA polymerase/promoter system. The protein was overproduced in Escherichia coli, and the [2Fe-2S] cluster was incorporated into the protein by in vitro reconstitution. The overall yield was approximately 30 mg of purified, reconstituted ferredoxin per liter of culture. Four of the five cysteines in human ferredoxin are coordinated to the iron-sulfur cluster. First, the non-ligand cysteine (cysteine-95) was mutated to alanine, and then double mutants were created in which each of the other four cysteines (at positions 46, 52, 55, and 92) were mutated individually to serine. The wild-type ferredoxin and each of the five mutant proteins were studied by UV-visible spectroscopy and electron paramagnetic resonance spectroscopy. The EPR gav values of all five mutants were very similar to that of wild-type human ferredoxin. In the reduced state, three of the cysteine-to-serine mutants exhibited axial EPR spectra similar to that of wild-type, but one of the double mutants (C52S/C95A) exhibited a rhombic EPR spectrum. The UV-visible spectroscopic properties of the wild-type and the C95A mutant ferredoxins were identical, but those of the other cysteine-to-serine mutant proteins of human ferredoxin were quite different from those of the wild-type protein and each other. These results, along with those from cysteine-to-serine mutations in other ferredoxins, provide the basis for a more comprehensive theoretical and practical understanding of the features important to the ligation of [2Fe-2S] clusters, although they do not yet permit determination of which two cysteines ligate Fe(II) and which ligate Fe(III) in the reduced protein.


Assuntos
Ferredoxinas/química , Sequência de Aminoácidos , Anabaena/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Ferredoxinas/genética , Ferredoxinas/metabolismo , Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Serina/química , Espectrofotometria , Espectrofotometria Ultravioleta
12.
J Biol Chem ; 271(14): 7973-7, 1996 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-8626477

RESUMO

Carbon-monoxide dehydrogenase (CODH) from Rhodospirillum rubrum contains two metal centers: a Ni-X-[Fe4S4]2+/1+ cluster (C-center) that serves as the COoxidation site and a standard [Fe4S4]2+/1+ cluster (B-center) that mediates electron flow from the C-center to external electron acceptors. Four states of the C-center were previously identified in electron paramagnetic resonance (EPR) and Mössbauer studies. In this report, EPR-redox titrations demonstrate that the fully oxidized, diamagnetic form of the C-center (Cox) undergoes a one-electron reduction to the Cred1 state (gav = 1.87) with a midpoint potential of -110 mV. The reduction of Cox to Cred1 is shown to coincide with the reduction of an [Fe4S4]2+/1+ cluster in redox-titration experiments monitored by UV-visible spectroscopy. Nickel-deficient CODH, which is devoid of nickel yet contains both [Fe4S4]2+/1+ clusters, does not exhibit EPR-active states or reduced Fe4S4 clusters at potentials more positive than -350 mV.


Assuntos
Aldeído Oxirredutases/química , Complexos Multienzimáticos/química , Rhodospirillum rubrum/enzimologia , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Níquel/química , Oxirredução , Espectrofotometria Ultravioleta
13.
Plant Physiol ; 100(3): 1411-6, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16653139

RESUMO

The effects of glycine, alanine, serine, and various phosphorylated metabolites on the activity of phosphoenolpyruvate (PEP) carboxylase from Zea mays and Crassula argentea were studied. The maize enzyme was found to be activated by amino acids at a site that is separate from the glucose 6-phosphate binding site. The combination of glycine and glucose 6-phosphate synergistically reduced the apparent K(m) of the enzyme for PEP and increased the apparent V(max). Of the amino acids tested, glycine showed the lowest apparent K(a) and caused the greatest activation. d-Isomers of alanine and serine were more effective activators than the l-isomers. Unlike the maize enzyme, the Crassula enzyme was not activated by amino acids. Activation of either the Crassula or maize enzyme by glucose 6-phosphate occurred without dephosphorylation of the activator molecule. Furthermore, the Crassula enzyme was activated by two compounds containing phosphonate groups whose carbon-phosphorus bonds were not cleaved by the enzyme. A study of analogs of glucose 6-phosphate with Crassula PEP carboxylase revealed that the identity of the ring heteroatom was a significant structural feature affecting activation. Activation was not highly sensitive to the orientation of the hydroxyl group at the second or fourth carbon positions or to the presence of a hydroxyl group at the second position. However, the position of the phosphate group was found to be a significant factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...