Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Imaging Sci ; 5: 52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605126

RESUMO

OBJECTIVES: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury. MATERIALS AND METHODS: Cerebral blood flow changes and microhemorrhages in male Sprague Dawley rats at 4 h, 24 h, 3 days, and 7 days were assessed following a closed head injury induced by the Marmarou impact acceleration device (2 m height, 450 g brass weight). Cerebral blood flow was measured by arterial spin labeling. Microhemorrhages were assessed by susceptibility-weighted imaging and Prussian blue histology. RESULTS: Traumatic brain injury rats showed reduced regional and global cerebral blood flow at 4 h and 7 days post-injury. Injured rats showed hemorrhagic lesions in the cortex, corpus callosum, hippocampus, and brainstem in susceptibility-weighted imaging. Injured rats also showed Prussian blue reaction products in both the white and gray matter regions up to 7 days after the injury. These lesions were observed in various areas of the cortex, corpus callosum, hippocampus, thalamus, and midbrain. CONCLUSIONS: These results suggest that changes in cerebral blood flow and hemorrhagic lesions can persist for sub-acute periods after the initial traumatic insult in an animal model. In addition, microhemorrhages otherwise not seen by susceptibility-weighted imaging are present in diverse regions of the brain. The combination of altered cerebral blood flow and microhemorrhages can potentially be a source of secondary injury changes following traumatic brain injury and may need to be taken into consideration in the long-term care of these cases.

2.
Brain Res ; 1467: 81-90, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22652307

RESUMO

Impaired axoplasmic transport (IAT) and neurofilament compaction (NFC), two common axonal pathology processes involved in traumatic axonal injury (TAI), have been well characterized. TAI is found clinically and in animal models in brainstem white matter (WM) tracts and in the corpus callosum (CC), optic chiasm (Och), and internal capsule. Previous published quantitative studies of the time course of TAI expression induced by the Marmarou impact acceleration model have been limited to the brainstem. Accordingly, this study assessed the extent of IAT and NFC in the CC and Och at 8h, 28 h, 3 days and 7 days after traumatic brain injury (TBI) induction by the Marmarou impact acceleration model. IAT peak density was observed at 8h in the CC and 28 h in the Och post-TBI. NFC peak density was observed at 28 h in both structures. The density of IAT and NFC decreased with increasing survival time in both structures. The NFC density time profile followed a similar trend in both the Och and CC, whereas the IAT density time profile was variable between the Och and CC. Furthermore, a strong linear relationship was observed between IAT and NFC in the CC but not in the Och. These findings highlight the heterogeneity of TAI as evidenced by variable IAT and NFC injury time profiles in each anatomical structure. This variability indicates the requirement of multiple markers for a comprehensive TAI evaluation and multiple targeted treatments for TAI polypathology within its therapeutic window time frame.


Assuntos
Axônios/patologia , Lesões Encefálicas/patologia , Corpo Caloso/patologia , Quiasma Óptico/patologia , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Transporte Axonal , Lesões Encefálicas/induzido quimicamente , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo
3.
Brain Res ; 1452: 29-38, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22472596

RESUMO

Traumatic axonal injury (TAI) involves neurofilament compaction (NFC) and impaired axoplasmic transport (IAT) in distinct populations of axons. Previous quantification studies of TAI focused on limited areas of pyramidal tract (Py) but not its entire length. Quantification of TAI in corpus callosum (CC) and its comparison to that in Py is also lacking. This study assessed and compared the extent of TAI in the entire Py and CC of rats following TBI. TBI was induced by a modified Marmarou impact acceleration device in 31 adult male Sprague Dawley rats by dropping a 450 gram impactor from either 1.25 m or 2.25 m. Twenty-four hours after TBI, TAI was assessed by beta amyloid precursor protein (ß-APP-IAT) and RMO14 (NFC) immunocytochemistry. TAI density (ß-APP and RMO14 axonal swellings, retraction balls and axonal profiles) was counted from panoramic images of CC and Py. Significantly high TAI was observed in 2.25 m impacted rats. ß-APP immunoreactive axons were significantly higher in number than RMO14 immunoreactive axons in both the structures. TAI density in Py was significantly higher than in CC. Based on our parallel biomechanical studies, it is inferred that TAI in CC may be related to compressive strains and that in Py may be related to tensile strains. Overall, IAT appears to be the dominant injury type induced by this model and injury in Py predominates that in CC.


Assuntos
Transporte Axonal/fisiologia , Corpo Caloso/metabolismo , Lesão Axonal Difusa/metabolismo , Proteínas de Neurofilamentos/metabolismo , Tratos Piramidais/metabolismo , Aceleração , Animais , Axônios , Corpo Caloso/fisiopatologia , Lesão Axonal Difusa/fisiopatologia , Masculino , Tratos Piramidais/fisiopatologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...