Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 20(2): 159-165, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30536690

RESUMO

The surfaces of influenza A virus (IAV) particles are packed with hundreds of homo-trimeric hemagglutinins (HAs). Monovalent sugars have low affinity for HA, but distance-optimized bivalent sialyl-LacNAc (SLN) conjugates bind it with 103 -fold enhanced potency. Herein, we describe the oligomerization of distance-optimized bivalent binders by branched and linear hybridization on long repetitive DNA templates. The most effective complexes fully inhibited IAVs at a DNA template concentration of 10-9 m. Although a 10-2 m concentration of free trisaccharide ligand is required for full inhibition of the virus, DNA templating enables a 104 -fold reduction in the amount of sugar required. Notably, hybridization-induced rigidification of the DNA templates increased the serospecificity. Cryo-TEM analysis revealed that both spaghetti-type linear forms and cotton-ball-like clusters are able to bridge several adjacent HA molecules on the IAV surface. Programmed self-assembly of ligand-nucleic acid conjugates on long DNA templates might provide generic access to target-specific, high-affinity binders of proteins on globular objects such as cells and viruses.


Assuntos
Antivirais/farmacologia , DNA Circular/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/farmacologia , Vírion/efeitos dos fármacos , Antivirais/química , DNA Circular/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/metabolismo , Ácidos Nucleicos Peptídicos/química , Vírion/metabolismo
2.
J Am Chem Soc ; 139(45): 16389-16397, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29052990

RESUMO

Attachment of the Influenza A virus onto host cells involves multivalent interactions between virus surface hemagglutinin (HA) and sialoside-containing glyco ligands. Despite the development of extremely powerful multivalent binders of the Influenza virus and other viruses, comparably little is known about the optimal spacing of HA ligands, which ought to bridge binding sites within or across the trimeric HA molecules. To explore the criteria for ligand economical high affinity binding, we systematically probed distance-affinity relationships by means of two differently behaving scaffold types based on (i) flexible polyethylene glycol (PEG) conjugates and (ii) rigid self-assembled DNA·PNA complexes. The bivalent scaffolds presented two sialyl-LacNAc ligands in 23-101 Å distance. A combined analysis of binding by means of microscale thermophoresis measurements and statistical mechanics models exposed the inherent limitations of PEG-based spacers. Given the distance requirements of HA, the flexibility of PEG scaffolds is too high to raise the effective concentration of glyco ligands above a value that allows interactions with the low affinity binding site. By contrast, spatial screening with less flexible, self-assembled peptide nucleic acid (PNA)·DNA complexes uncovered a well-defined and, surprisingly, bimodal distance-affinity relationship for interactions of the Influenza A virus HA with bivalent displays of the natural sialyl-LacNAc ligand. Optimal constructs conferred 103-fold binding enhancements with only two ligands. We discuss the existence of secondary binding sites and shine light on the preference for intramolecular rather than intermolecular recognition of HA trimers on the virus surface.


Assuntos
DNA/química , Hemaglutininas/química , Vírus da Influenza A/química , Polietilenoglicóis/química , Trissacarídeos/química , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA