Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 1(1): 86-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31528845

RESUMO

Decreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O2 demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia. Deletion of adipocyte Ant2 improves obesity-induced intracellular adipocyte hypoxia by decreasing obesity-induced adipocyte oxygen demand, without effects on mitochondrial number or mass, or oligomycin-sensitive respiration. This led to decreased adipose tissue HIF-1α expression and inflammation with improved glucose tolerance and insulin resistance in both a preventative or therapeutic setting. Our results suggest that ANT2 may be a target for the development of insulin sensitizing drugs and that ANT2 inhibition might have clinical utility.


Assuntos
Translocador 2 do Nucleotídeo Adenina/deficiência , Adipócitos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Resistência à Insulina/genética , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose , Fibrose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxigênio/metabolismo
2.
Sci Adv ; 5(7): eaaw4176, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281892

RESUMO

The decrease in incretin effects is an important etiologic component of type 2 diabetes with unknown mechanisms. In an attempt to understand obesity-induced changes in liver oxygen homeostasis, we found that liver HIF-1α expression was increased mainly by soluble factors released from obese adipocytes, leading to decreased incretin effects. Deletion of hepatocyte HIF-1α protected obesity-induced glucose intolerance without changes in body weight, liver steatosis, or insulin resistance. In-depth mouse metabolic phenotyping revealed that obesity increased first-pass degradation of an incretin hormone GLP-1 with increased liver DPP4 expression and decreased sinusoidal blood flow rate, reducing active GLP-1 levels in peripheral circulation. Hepatocyte HIF-1α KO blocked these changes induced by obesity. Deletion of hepatocyte HIF-2α did not change liver DPP4 expression but improved hepatic steatosis. Our results identify a previously unknown pathway for obesity-induced impaired beta cell glucose response (incretin effects) and the development of glucose intolerance through inter-organ communications.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hepatócitos/metabolismo , Obesidade/etiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dipeptidil Peptidase 4/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Hepatite/etiologia , Resistência à Insulina , Fígado/irrigação sanguínea , Fígado/metabolismo , Masculino , Camundongos Knockout
3.
Diabetes ; 60(10): 2474-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21911747

RESUMO

OBJECTIVE: Tissue inflammation is a key factor underlying insulin resistance in established obesity. Several models of immuno-compromised mice are protected from obesity-induced insulin resistance. However, it is unanswered whether inflammation triggers systemic insulin resistance or vice versa in obesity. The purpose of this study was to assess these questions. RESEARCH DESIGN AND METHODS: We fed a high-fat diet (HFD) to wild-type mice and three different immuno-compromised mouse models (lymphocyte-deficient Rag1 knockout, macrophage-depleted, and hematopoietic cell-specific Jun NH(2)-terminal kinase-deficient mice) and measured the time course of changes in macrophage content, inflammatory markers, and lipid accumulation in adipose tissue, liver, and skeletal muscle along with systemic insulin sensitivity. RESULTS: In wild-type mice, body weight and adipose tissue mass, as well as insulin resistance, were clearly increased by 3 days of HFD. Concurrently, in the short-term HFD period inflammation was selectively elevated in adipose tissue. Interestingly, however, all three immuno-compromised mouse models were not protected from insulin resistance induced by the short-term HFD. On the other hand, lipid content was markedly increased in liver and skeletal muscle at day 3 of HFD. CONCLUSIONS: These data suggest that the initial stage of HFD-induced insulin resistance is independent of inflammation, whereas the more chronic state of insulin resistance in established obesity is largely mediated by macrophage-induced proinflammatory actions. The early-onset insulin resistance during HFD feeding is more likely related to acute tissue lipid overload.


Assuntos
Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Tecido Adiposo/metabolismo , Animais , Glicemia , Ceramidas/metabolismo , Esquema de Medicação , Epididimo/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA