Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736217

RESUMO

Nitrogen (N) is a macronutrient limiting crop productivity with varied requirements across species and genotypes. Understanding the mechanistic basis of N responsiveness by comparing contrasting genotypes could inform the development and selection of varieties with lower N demands, or inform agronomic practices to sustain yields with lower N inputs. Given the established role of millets in ensuring climate-resilient food and nutrition security, we investigated the physiological and genetic basis of nitrogen responsiveness in foxtail millet (Setaria italica L.). We had previously identified genotypic variants linked to N responsiveness, and here, we dissect the mechanistic basis of the trait by examining the physiological and molecular behaviour of N responsive (NRp-SI58) and non-responsive (NNRp-SI114) accessions at high and low N. Under high N, NRp-SI58 allocates significantly more biomass to nodes, internodes and roots, more N to developing grains, and is more effective at remobilising flag leaf N compared to NNRp-SI114. Post anthesis flag leaf gene expression suggests that differences in N induce much higher transcript abundance in NNRp-SI114 than NRp-SI58, a large proportion of which are potentially regulated by APETALA2 (AP2) transcription factors. Overall, the study provides novel insights into the regulation and manipulation of N responsiveness in S. italica.

2.
Front Robot AI ; 11: 1225297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544744

RESUMO

Actuator failure on a remotely deployed robot results in decreased efficiency or even renders it inoperable. Robustness to these failures will become critical as robots are required to be more independent and operate out of the range of repair. To address these challenges, we present two approaches based on modular robotic architecture to improve robustness to actuator failure of both fixed-configuration robots and modular reconfigurable robots. Our work uses modular reconfigurable robots capable of modifying their style of locomotion and changing their designed morphology through ejecting modules. This framework improved the distance travelled and decreased the effort to move through the environment of simulated and physical robots. When the deployed robot was allowed to change its locomotion style, it showed improved robustness to actuator failure when compared to a robot with a fixed controller. Furthermore, a robot capable of changing its locomotion and design morphology statistically outlasted both tests with a fixed morphology. Testing was carried out using a gazebo simulation and validated in multiple tests in the field. We show for the first time that ejecting modular failed components can improve the overall mission length.

3.
Plant Cell Rep ; 43(1): 6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127149

RESUMO

KEY MESSAGE: A total of 104 foxtail millet accessions were evaluated for 11 nutrients in three environments and 67 high-confidence marker-trait associations (MTAs) were identified. Six SNPs showed pleiotropic effect and associated with two or more nutrients, whereas 24 candidate genes were identified for 28 MTAs involving seven traits. Millets are known for their better nutritional profiles compared to major cereals. Foxtail millet (Setaria italica) is rich in nutrients essential to circumvent malnutrition and hidden hunger. However, the genetic determinants underlying this trait remain elusive. In this context, we evaluated 104 diverse foxtail millet accessions in three different environments (E1, E2, and E3) for 11 nutrients and genotyped with 30K SNPs. The genome-wide association study showed 67 high-confidence (Bonferroni-corrected) marker-trait associations (MTAs) for the nutrients except for phosphorus. Six pleiotropic SNPs were also identified, which were associated with two or more nutrients. Around 24 candidate genes (CGs) were identified for 28 MTAs involving seven nutrients. A total of 17 associated SNPs were present within the gene region, and five (5) were mapped in the exon of the CGs. Significant SNPs, desirable alleles and CGs identified in the present study will be useful in breeding programmes for trait improvement.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Estudo de Associação Genômica Ampla , Grão Comestível , Melhoramento Vegetal , Genômica , Nutrientes
4.
Materials (Basel) ; 16(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37512350

RESUMO

Force sensors on climbing robots give important information to the robot control system, however, off-the-shelf sensors can be both heavy and bulky. We investigate the optimisation of a lightweight integrated force sensor made of piezoelectric material for the multi-limbed climbing robot MAGNETO. We focus on three design objectives for this piezoelectric component. The first is to develop a lightweight component with minimal compliance that can be embedded in the foot of the climbing robot. The second objective is to ensure that the component has sensing capability to replace the off-the-shelf force sensor. Finally, the component should be robust for a range of climbing configurations. To this end, we focus on a compliance minimisation problem with constrained voltage and volume fraction. We present structurally optimised designs that satisfy the three main design criteria and improve upon baseline results from a reference component. Our computational study demonstrates that the optimisation of embedded robotic components with piezoelectric sensing is worthy of future investigation.

5.
J Adv Res ; 42: 249-261, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513416

RESUMO

INTRODUCTION: N responsiveness is the capacity to perceive and induce morpho-physiological adaptation to external and internal Nitrogen (N). Crop productivity is propelled by N fertilizer and requires the breeding/selection of cultivars with intrinsically high N responsiveness. This trait has many advantages in being more meaningful in commercial/environmental context, facilitating in-season N management and not being inversely correlated with N availability over processes regulating NUE. Current lack of its understanding at the physio-genetic basis is an impediment to select for cultivars with a predictably high N response. OBJECTIVES: To dissect physio-genetic basis of N responsiveness in 142 diverse population of foxtail millet, Setaria italica (L.) by employing contrasting N fertilizer nutrition regimes. METHODS: We phenotyped S. italica accessions for major yield related traits under low (N10, N25) and optimal (N100) growth conditions and genotyped them to subsequently perform a genome-wide association study to identify genetic loci associated with nitrogen responsiveness trait. Groups of accessions showing contrasting trait performance and allelic forms of specific linked genetic loci (showing haplotypes) were further accessed for N dependent transcript abundances of their proximal genes. RESULTS: Our study show that N dependent yield rise in S. italica is driven by grain number whose responsiveness to N availability is genetically underlined. We identify 22 unique SNP loci strongly associated with this trait out of which six exhibit haplotypes and consistent allelic variation between lines with contrasting N dependent grain number response and panicle architectures. Furthermore, differential transcript abundances of specific genes proximally linked to these SNPs in same lines is indicative of their N dependence in a genotype specific manner. CONCLUSION: The study demonstrates the value/ potential of N responsiveness as a selection trait and identifies key genetic components underlying the trait in S. italica. This has major implications for improving crop N sustainability and food security.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Estudo de Associação Genômica Ampla , Nitrogênio , Fertilizantes , Melhoramento Vegetal , Locos de Características Quantitativas , Grão Comestível/genética
6.
Front Robot AI ; 9: 949460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105762

RESUMO

Firm foot contact is the top priority of climbing robots to avoid catastrophic events, especially when working at height. This study proposes a robust planning and control framework for climbing robots that provides robustness to slippage in unknown environments. The framework includes 1) a center of mass (CoM) trajectory optimization under the estimated contact condition, 2) Kalman filter-like approach for uncertain environment parameter estimation and subsequent CoM trajectory re-planing, and 3) an online weight adaptation approach for whole-body control (WBC) framework that can adjust the ground reaction force (GRF) distribution in real time. Though the friction and adhesion characteristics are often assumed to be known, the presence of several factors that lead to a reduction in adhesion may cause critical problems for climbing robots. To address this issue safely and effectively, this study suggests estimating unknown contact parameters in real time and using the evaluated contact information to optimize climbing motion. Since slippage is a crucial behavior and requires instant recovery, the computation time for motion re-planning is also critical. The proposed CoM trajectory optimization algorithm achieved state-of-art fast computation via trajectory parameterization with several reasonable assumptions and linear algebra tricks. Last, an online weight adaptation approach is presented in the study to stabilize slippery motions within the WBC framework. This can help a robot to manage the slippage at the very last control step by redistributing the desired GRF. In order to verify the effectiveness of our method, we have tested our algorithm and provided benchmarks in simulation using a magnetic-legged climbing robot Manegto.

7.
J Biotechnol ; 328: 34-46, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33421509

RESUMO

MicroRNAs (miRNAs) are an emerging class of small non-coding RNAs that exhibit important role in regulation of gene expression, mostly through the mechanism of cleavage and/or inhibition of translation of target mRNAs during or after transcription. Although much has been unravelled about the role of miRNAs in diverse biological processes like maintenance of functional integrity of genes and genome, growth and development, metabolism, and adaptive responses towards biotic and abiotic stresses in plants, not much is known on their specific roles in majority of cash crops - an area of investigation with potentially significant and gainful economic implications. Tea (Camellia sinensis) is globally the second most consumed beverage after water and its cultivation has major agro-economic and social ramifications. In recent years, global tea production has been greatly challenged by many biotic and abiotic stress factors and a deeper understanding of molecular processes regulating stress adaptation in this largely under investigated crop stands to significantly facilitate potential crop improvement strategies towards durable stress tolerance. This review endeavours to highlight recent advances in our understanding of the role of miRNAs in regulating stress tolerance traits in tea plant with additional focus on their role in determining tea quality attributes.


Assuntos
Camellia sinensis , MicroRNAs , Camellia sinensis/genética , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Fisiológico , Chá
8.
Physiol Plant ; 171(4): 559-577, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32770754

RESUMO

Iron (Fe) is essential for plant growth and therefore plays a key role in influencing crop productivity worldwide. Apart from its central role in chlorophyll biosynthesis and oxidative phosphorylation (electron transfer), it is an important constituent of many enzymes involved in primary metabolism. Fe has different accessibilities to the roots in the rhizosphere depending upon whether it is ferrous (soluble) or ferric (insoluble) oxidation stages, which in turn, determine two kinds of Fe uptake strategies employed by the plants. The reduction strategy is exclusively found in non-graminaceous plants wherein the ferrous Fe2+ is absorbed and translocated from the soil through specialized transporters. In contrast, the chelation strategy (widespread in graminaceous plants) relies on the formation of Fe (III)-chelate complex as the necessary requirement of Fe uptake. Once inside the cell, Fe is translocated, compartmentalized and stored through a common set of physiological processes involving many transporters and enzymes whose functions are controlled by underlying genetic components, so that a fine balance of Fe homeostasis is maintained. Recently, molecular and mechanistic aspects of the process involving the role of transcription factors, signaling components, and cis-acting elements have been obtained, which has enabled a much better understanding of its ecophysiology. This mini-review summarizes recent developments in our understanding of Fe transport in higher plants with particular emphasis on crops in the context of major agronomically important abiotic stresses. It also highlights outstanding questions on the regulation of Fe homeostasis and lists potentially useful genes/regulatory pathways that may be useful for subsequent crop improvement under the stresses discussed through either conventional or transgenic approaches.


Assuntos
Produtos Agrícolas , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/metabolismo , Homeostase , Ferro/metabolismo , Raízes de Plantas/metabolismo
9.
J Biotechnol ; 324: 121-133, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33031844

RESUMO

Green revolution has boosted crop yields by the development of varieties which rely on high fertilizer application. Since then, higher productivity has largely witnessed excessive nitrogen (N) fertilizer application resulting in many environmentally and agronomically unsustainable consequences. One possible solution to this problem is to develop varieties with efficient N use endowed with genetically superior N metabolizing machinery, thereby significantly reducing N loss in soil and facilitating gainful yield performance at lower N conditions. Nitrate (NO3-) is the major form of N acquired by plants in aerobic soils. Hence, its efficient acquisition, transport, assimilation into complex organic compounds, and overall homeostasis is crucial to ensure productivity under optimal and suboptimal N conditions. Transcription factors are prime regulators of these processes, and insights into their mechanism of action and the resultant effect on N metabolism are crucial to generating crops with efficient and durable nitrogen use efficiency. The present review, therefore, presents a comprehensive updated account of major N responsive transcription factor families, their cross-talk with other growth factors, and explores existing and potential areas of their biotechnological application to maximize crop yields.


Assuntos
Nitratos , Nitrogênio , Produtos Agrícolas/genética , Fertilizantes , Humanos , Nitratos/análise , Solo
10.
Methods Mol Biol ; 2057: 113-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595475

RESUMO

Optimization of biological nitrogen (N) use is instrumental in ensuring higher crop yields and preventing environmental degradation due to excessive N fertilizer application. Furthermore, understanding how genetic differences differentially influence N remobilization into seeds under contrasting nitrogen nutrition regimes is crucial to our understanding of nitrogen use efficiency (NUE) in crops in addition to enabling a deeper mechanistic understanding of the dynamics of nitrogen metabolism in plants. In this chapter, a method is proposed to precisely measure and analyze nitrogen use efficiency (NUE) in a pot-based system under different nitrogen nutrition regimes in foxtail millet (Setaria italica L.), a climate change-resilient C4 model crop with great promise for food security and nutrition in the twenty-first century.


Assuntos
Produtos Agrícolas/metabolismo , Nitrogênio/análise , Setaria (Planta)/metabolismo , Botânica/métodos , Produtos Agrícolas/química , Fertilizantes , Nitrogênio/metabolismo , Setaria (Planta)/química , Fluxo de Trabalho
11.
Sci Rep ; 9(1): 5020, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903013

RESUMO

Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Análise de Sequência de DNA/métodos , Setaria (Planta)/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Frequência do Gene , Genótipo , Desequilíbrio de Ligação , Fenótipo , Filogenia , Setaria (Planta)/classificação
12.
Plants People Planet ; 1(2): 98-101, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34853823

RESUMO

Societal Impact Statement In the modern world it has become increasingly urgent to balance human food security needs with environmental needs. These needs are not necessarily mutually exclusive, and can be synergistic. The Cambridge-India Network for Translational Research in Nitrogen (CINTRIN) seeks to reduce nitrogen fertilizer overapplication (and the resulting environmental pollution) in Indian agriculture: a situation with various scientific and sociopolitical drivers, which equally have various sociopolitical and scientific solutions. By listening to the needs of local farmers and applying the knowledge and resources of global plant science research, achieving higher crop yields with less nitrogen is an achievable prospect for India.

14.
Funct Integr Genomics ; 17(5): 565-581, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28293806

RESUMO

Intensive farming has depleted the soil zinc (Zn) availability resulting in decreased crop productivity. Here, we attempt to understand the Zn deficiency response in rice through temporal transcriptome analysis. For this, rice seedlings were raised under Zn-deficient conditions up to 4 weeks followed by Zn re-supply for 3 days. Zn-deficient plants developed characteristic deficiency symptoms such as leaf bronzing, decrease in biomass, total chlorophyll, PSII efficiency, decreased carbonic anhydrase activity and increased ROS production. Interestingly, severe alterations in root system architecture were also observed. Comprehensive transcriptome analyses of rice seedlings were carried out after 2 (DEF2W) and 4 weeks (DEF4W) of Zn deficiency with respect to transcriptome profiles of corresponding Zn sufficient conditions (SUF2W, SUF4W). Additionally, to detect the potential Zn-responsive genes, transcriptome profile of Zn-recovered seedlings was compared with DEF4W. All differentially expressed Zn-responsive genes were categorized into early and late Zn deficiency response, and a set of 77 genes, induced and repressed on Zn deficiency and re-supply, respectively, was identified. These genes could be used as low Zn-responsive marker genes. Further, genes involved in membrane transport, phytosiderophore activity and organic acid biosynthesis showed high differential expression. Additionally, the present study unravelled several genes putatively associated with alterations in root system architecture under Zn deficiency and provides novel insights into the interpretation of morpho-physiological, biochemical and molecular regulation of zinc deficiency responses in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Transcriptoma , Zinco/deficiência , Genes de Plantas , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo
15.
Plant J ; 86(1): 35-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26932764

RESUMO

Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Transdução de Sinais , Triticum/fisiologia , Ascomicetos/citologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Endogamia , Anotação de Sequência Molecular , Oxilipinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Ácido Salicílico/metabolismo , Triticum/genética , Triticum/imunologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-24291416

RESUMO

Autism spectrum disorders are heritable and behaviorally-defined neurodevelopmental disorders having skewed sex ratio. Serotonin as modulator of behavior and implication of serotonergic dysfunction in ASD etiology corroborates that serotonergic system genes are potential candidates for autism susceptibility. In the current study X-chromosomal gene, MAOA responsible for degradation of serotonin is investigated for possible association with ASD using population-based approach. Study covers analysis of 8 markers in 421 subjects including cases and ethnically-matched controls from West Bengal. MAOA marker, rs6323 and various haplotypes formed between the markers show significant association with the disorder. Stratification on the basis of sex reveals significant genetic effect of rs6323 with low activity T allele posing higher risk in males, but not in females. Haplotypic association results also show differential effect both in males and females. Contrasting linkage disequilibrium pattern between pair of markers involving rs6323 in male cases and controls further supports the sex-bias in genetic association. Bioinformatic analysis shows presence of Y-encoded SRY transcription factor binding sites in the neighborhood of rs1137070. C allele of rs1137070 causes deletion of GATA-2 binding site and GATA-2 is known to interact with SRY. This is the first study highlighting male-specific effect of rs6323 marker and its haplotypes in ASD etiology and it suggests sexual dimorphic effect of MAOA in this disorder. Overall results of this study identify MAOA as a possible ASD susceptibility locus and the differential genetic effect in males and females might contribute to the sex ratio differences and molecular pathology of the disorder.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença/genética , Monoaminoxidase/genética , Caracteres Sexuais , Adolescente , Adulto , Alelos , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Marcadores Genéticos/genética , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
17.
Mol Biotechnol ; 53(3): 237-48, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22367692

RESUMO

A cDNA-AFLP approach was used to identify transcript and/or genes specifically expressed in response to drought in tea. Drought was artificially induced and whole genome transcript profiling was done at three different stages-6 days before wilting, 3 days before wilting and at wilting stage of both tolerant and susceptible cultivars, and genetic differences was thus visualized as polymorphisms in the transcriptome. The cDNA-AFLP technique allowed genes and transcripts to be identified in the tolerant genotype (TV-23) whose expression is responsive to drought stress. The cluster analysis revealed two types of clustering-type I separated the tolerant and susceptible cultivar, whereas type II separated the time point of sample and this may be grouped as early and late responsive transcripts. 108 transcript derived fragments were identified as differentially expressed in tolerant genotypes of which 89 sequences could be obtained. Fifty-nine of them showed homology in the public databases. Functional ontology showed genes related to carbohydrate metabolism, response to stress, protein modification process and translation. Cluster I includes five fragments and cluster II includes 25 fragments. Other genes strongly expressed in response to drought in tolerant genotype would help us in identifying and determining the genetic basis of mechanisms involved in conferring drought tolerance in tea.


Assuntos
Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Chá/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Análise por Conglomerados , Fragmentação do DNA , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Genótipo , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Transcriptoma
18.
Funct Integr Genomics ; 12(3): 543-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562548

RESUMO

Understanding the genes that govern tea plant (Camellia sinensis) architecture and response to drought stress is urgently needed to enhance breeding in tea with improved water use efficiency. Field drought is a slow mechanism and the plants go through an adaptive process in contrast to the drastic changes of rapid dehydration in case of controlled experiments. We identified a set of drought responsive genes under controlled condition using SSH, and validated the identified genes and their pattern of expression under field drought condition. The study was at three stages of water deficit stress viz., before wilting, wilting and recovery, which revealed a set of genes with higher expression at before wilting stage including dehydrin, abscissic acid ripening protein, glutathione peroxidase, cinnamoyl CoA reductase, calmodulin binding protein. The higher expression of these genes was related with increase tolerance character of DT/TS-463 before wilting, these five tolerant progenies could withstand drought stress and thus are candidates for breeding. We observed that physiological parameter like water use efficiency formed a close group with genes such as calmodulin related, DRM3, hexose transporter, hydrogen peroxide induced protein, ACC oxidase, lipase, ethylene responsive transcription factor and diaminopimelate decarboxylase, during wilting point. Our data provides valuable information for the gene components and the dynamics of gene expression in second and third leaf against drought stress in tea, which could be regarded as candidate targets potentially associated with drought tolerance. We propose that the identified five tolerant progenies on the basis of their drought tolerance can thus be utilised for future breeding programmes.


Assuntos
Adaptação Biológica , Camellia sinensis/genética , Secas , Perfilação da Expressão Gênica/métodos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/fisiologia , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Lipase/genética , Lipase/metabolismo , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA