Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753025

RESUMO

Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 µm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.

2.
Noncoding RNA ; 10(2)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668378

RESUMO

Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality.

3.
Stroke ; 55(3): 762-764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258571
4.
Gut Microbes ; 15(2): 2271629, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37910478

RESUMO

The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos , Feminino , Masculino , Animais , Mucosa Intestinal/microbiologia , Estradiol , RNA Ribossômico 16S/genética , Mucinas/metabolismo , Lesões Encefálicas/metabolismo
5.
Proc Inst Mech Eng H ; 237(11): 1297-1305, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37924244

RESUMO

Clinical fixation screws are common in clinical practices to fix mandibular condyle fractures. Evidence suggests significance of 'working length' that is, distance between proximal and distal fixation screws in proximity to the fracture in orthopaedic implant design. In pursuit of stable implant-bone construct, this study aims to investigate the biomechanical performance of each configuration considered in the study and provide an optimal working length between the screws for clinical reference. Finite element models of virtually designed broken condyle as type 'B' were simulated and analysed in ANSYS Workbench. Screws are implanted according to previous literature at five varied distances 'd' maintaining five different ratios with the fracture length 'D'. Based on a literature review, boundary conditions, muscle traction forces and non-linear contacts were assigned to obtain precise results. Each case is considered an individual configuration and von Mises distribution, microstrain in bone, screw-bone interface micromotion and fracture dislocation were evaluated for all these configurations. Stress-shielding phenomenon is observed for maximum von Mises stresses in bone. Microstrain concentration was significant in cancellous bone in the vicinity of the screw around the fracture line. Configurations were compared based on the stress-strain along with micromotion to support the required amount of osseointegration between implant and bone. Presented data from all five conditions supported the assumption that under physiological loading conditions, the D3 configuration provided stability for fracture healing. Further research on screw shapes, diameters and material properties, or investigating the direction of forces within the screws could provide further insight into this topic.


Assuntos
Parafusos Ósseos , Fixação Interna de Fraturas , Análise de Elementos Finitos , Fenômenos Biomecânicos , Placas Ósseas , Osso Esponjoso
6.
Res Sq ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37790313

RESUMO

Background: Stroke is a major cause of morbidity and mortality, and its incidence increases with age. While acute therapies for stroke are currently limited to intravenous thrombolytics and endovascular thrombectomy, recent studies have implicated an important role for the gut microbiome in post-stroke neuroinflammation. After stroke, several immuno-regulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, become activated. AHR is a master regulatory pathway that mediates neuroinflammation. Among various cell types, microglia (MG), as the resident immune cells of the brain, play a vital role in regulating post-stroke neuroinflammation and antigen presentation. Activation of AHR is dependent on a dynamic balance between host-derived and microbiota-derived ligands. While previous studies have shown that activation of MG AHR by host-derived ligands, such as kynurenine, is detrimental after stroke, the effects of post-stroke changes in microbiota-derived ligands of AHR, such as indoles, is unknown. Our study builds on the concept that differential activation of MG AHR by host-derived versus microbiome-derived metabolites affects outcomes after ischemic stroke. We examined the link between stroke-induced dysbiosis and loss of essential microbiota-derived AHR ligands. We hypothesize that restoring the balance between host-derived (kynurenine) and microbiota-derived (indoles) ligands of AHR is beneficial after stroke, offering a new potential avenue for therapeutic intervention in post-stroke neuroinflammation. Method: We performed immunohistochemical analysis of brain samples from stroke patients to assess MG AHR expression after stroke. We used metabolomics analysis of plasma samples from stroke and non-stroke control patients with matched comorbidities to determine the levels of indole-based AHR ligands after stroke. We performed transient middle cerebral artery occlusion (MCAO) in aged (18 months) wild-type (WT) and germ-free (GF) mice to investigate the effects of post-stroke treatment with microbiota-derived indoles on outcome. To generate our results, we employed a range of methodologies, including flow cytometry, metabolomics, and 16S microbiome sequencing. Results: We found that MG AHR expression is increased in human brain after stroke and after ex vivo oxygen-glucose deprivation and reperfusion (OGD/R). Microbiota-derived ligands of AHR are decreased in the human plasma at 24 hours after ischemic stroke. Kynurenine and indoles exhibited differential effects on aged WT MG survival after ex vivoOGD/R. We found that specific indole-based ligands of AHR (indole-3-propionic acid and indole-3-aldehyde) were absent in GF mice, thus their production depends on the presence of a functional gut microbiota. Additionally, a time-dependent decrease in the concentration of these indole-based AHR ligands occurred in the brain within the first 24 hours after stroke in aged WT mice. Post-stroke treatment of GF mice with a cocktail of microbiota-derived indole-based ligands of AHR regulated MG-mediated neuroinflammation and molecules involved in antigen presentation (increased CD80, MHC-II, and CD11b). Post-stroke treatment of aged WT mice with microbiota-derived indole-based ligands of AHR reduced both infarct volume and neurological deficits at 24 hours. Conclusion: Our novel findings provide compelling evidence that the restoration of a well-balanced pool of host-derived kynurenine-based and microbiota-derived indole-based ligands of AHR holds considerable therapeutic potential for the treatment of ischemic stroke.

7.
J Biomed Mater Res B Appl Biomater ; 111(12): 2089-2097, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624362

RESUMO

Total temporomandibular joint (TMJ) replacement is widely recognized as an effective treatment for TMJ disorders. The long-term stability of TMJ implants depends on two important factors which are design concepts for fixation to anatomical locations in the mandible and bone conditions. Other factors include stress distribution, microstrain in the peri-implant, bone attributes like bone conditions leading to the clinical complications and failures. This study addresses these limitations by examining the influence of patient-specific design concepts and bone conditions on TMJ implant performance. Clinical evidences support the importance of implant design on healing ability. Previous studies have focused on achieving precise implant fit based on geometric considerations, however those published studies did not explore the impact of such. Against this perspective, the present study reports the extensive finite element analysis (FEA) results, while analyzing the impact of a newly designed patient-specific TMJ implant to address clinical complications associated with various bone conditions, particularly osteoporotic bone. In validating the FEA results, the performance of additively manufactured patient-specific TMJ implants was compared with designs resembling two commonly used clinically approved implant designs. By addressing the limitations of previous research and emphasizing the importance of bone conditions, the study provides valuable guidelines for the development of next-generation TMJ implants. These findings contribute to enhanced clinical outcomes and long-term success in the treatment of TMJ disorders.


Assuntos
Doenças Ósseas , Prótese Articular , Transtornos da Articulação Temporomandibular , Humanos , Articulação Temporomandibular/cirurgia , Mandíbula , Transtornos da Articulação Temporomandibular/cirurgia , Análise de Elementos Finitos , Fenômenos Biomecânicos , Estresse Mecânico
8.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899862

RESUMO

Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively target LOX, PTCH1, COL22A1, FOXO1, or HMGA2, via in silico analysis, which were associated with Wnt or inflammatory pathways and selected for further study. The expressions of these target genes were downregulated in sepsis IECs, possibly through posttranscriptional modifications of these miRNAs. Taken together, our study suggests that IECs display a distinctive miRNA profile which is capable of comprehensively and functionally reshaping the IEC-specific mRNA landscape in a sepsis model.


Assuntos
MicroRNAs , Sepse , Camundongos , Animais , Perfilação da Expressão Gênica , MicroRNAs/genética , Células Epiteliais/metabolismo , Intestinos , Sepse/genética
9.
Res Sq ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824976

RESUMO

Microglia are key mediators of inflammatory responses within the brain, as they regulate pro-inflammatory responses while also limiting neuroinflammation via reparative phagocytosis. Thus, identifying genes that modulate microglial function may reveal novel therapeutic interventions for promoting better outcomes in diseases featuring extensive inflammation, such as stroke. To facilitate identification of potential mediators of inflammation, we performed single-cell RNA sequencing of aged mouse brains following stroke and found that Ifi27l2a was significantly up-regulated, particularly in microglia. The increased Ifi27l2a expression was further validated in microglial culture, stroke models with microglial depletion, and human autopsy samples. Ifi27l2a is known to be induced by interferons for viral host defense, however the role of Ifi27l2a in neurodegeneration is unknown. In vitro studies in cultured microglia demonstrated that Ifi27l2a overexpression causes neuroinflammation via reactive oxygen species. Interestingly, hemizygous deletion of Ifi27l2a significantly reduced gliosis in the thalamus following stroke, while also reducing neuroinflammation, indicating Ifi27l2a gene dosage is a critical mediator of neuroinflammation in ischemic stroke. Collectively, this study demonstrates that a novel gene, Ifi27l2a, regulates microglial function and neuroinflammation in the aged brain and following stroke. These findings suggest that Ifi27l2a may be a novel target for conferring cerebral protection post-stroke.

10.
Nat Med ; 28(11): 2344-2352, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36138151

RESUMO

The gut microbiota shapes the response to immune checkpoint inhibitors (ICIs) in cancer, however dietary and geographic influences have not been well-studied in prospective trials. To address this, we prospectively profiled baseline gut (fecal) microbiota signatures and dietary patterns of 103 trial patients from Australia and the Netherlands treated with neoadjuvant ICIs for high risk resectable metastatic melanoma and performed an integrated analysis with data from 115 patients with melanoma treated with ICIs in the United States. We observed geographically distinct microbial signatures of response and immune-related adverse events (irAEs). Overall, response rates were higher in Ruminococcaceae-dominated microbiomes than in Bacteroidaceae-dominated microbiomes. Poor response was associated with lower fiber and omega 3 fatty acid consumption and elevated levels of C-reactive protein in the peripheral circulation at baseline. Together, these data provide insight into the relevance of native gut microbiota signatures, dietary intake and systemic inflammation in shaping the response to and toxicity from ICIs, prompting the need for further studies in this area.


Assuntos
Microbioma Gastrointestinal , Melanoma , Humanos , Microbioma Gastrointestinal/fisiologia , Estudos Prospectivos , Imunoterapia/efeitos adversos , Melanoma/terapia , Dieta
11.
Int J Artif Organs ; 45(8): 715-721, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730118

RESUMO

The articular disc reduces the stress distribution from the mandible to fossa. In total temporomandibular joint (TMJ) replacement, the implant is required to reduce the stress on fossa implant. Current studies lack standard and optimized parameters for the cylindrical dome on Christensen TMJ implant collar. This study briefed a novel TMJ implant head design and investigates the biomechanical behaviour by considering the articular disc. The radius of the head was varied with the height of the cylinder height to obtain the design of the experiment and the stress distribution was compared with an intact mandible-articular disc model by considering the viscoelastic property of the TMJ disc. The model was simulated at three different angles: 20°, 0° and -20° in the mediolateral direction to simulate the manducation. FEA analysis showed high stresses at the circular heads, and high strength is achieved with increased implant cylinder length and diameter. The results also showed a stress reduction of 50% on the fossa from the mandible. Hence, the newly designed head and suggested modifications may be used as a reference for further clinical improvement of Christensen TMJ as well as other TMJ implants.


Assuntos
Prótese Articular , Côndilo Mandibular , Fenômenos Biomecânicos , Análise de Elementos Finitos , Articulação Temporomandibular/cirurgia , Disco da Articulação Temporomandibular
12.
J Immunol ; 209(2): 288-300, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35732342

RESUMO

Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.


Assuntos
Microglia , Acidente Vascular Cerebral , Animais , Linfócitos B/metabolismo , Antígeno CD11b/metabolismo , Contagem de Células , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo
13.
Stroke ; 53(5): 1449-1459, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468002

RESUMO

In both acute and chronic diseases, functional differences in host immune responses arise from a multitude of intrinsic and extrinsic factors. Two of the most important factors affecting the immune response are biological sex and aging. Ischemic stroke is a debilitating disease that predominately affects older individuals. Epidemiological studies have shown that older women have poorer functional outcomes compared with men, in part due to the older age at which they experience their first stroke and the increased comorbidities seen with aging. The immune response also differs in men and women, which could lead to altered inflammatory events that contribute to sex differences in poststroke recovery. Intrinsic factors including host genetics and chromosomal sex play a crucial role both in shaping the host immune system and in the neuroimmune response to brain injury. Ischemic stroke leads to altered intracellular communication between astrocytes, neurons, and resident immune cells in the central nervous system. Increased production of cytokines and chemokines orchestrate the infiltration of peripheral immune cells and promote neuroinflammation. To maintain immunosurveillance, the host immune and central nervous system are highly regulated by a diverse population of immune cells which are strategically distributed within the neurovascular unit and become activated with injury. In this review, we provide a comprehensive overview of sex-specific host immune responses in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Sistema Nervoso Central , Citocinas , Feminino , Humanos , Imunidade , Masculino
14.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771465

RESUMO

Metastatic melanoma is a deadly malignancy with poor outcomes historically. Immuno-oncology (IO) agents, targeting immune checkpoint molecules such as cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1), have revolutionized melanoma treatment and outcomes, achieving significant response rates and remarkable long-term survival. Despite these vast improvements, roughly half of melanoma patients do not achieve long-term clinical benefit from IO therapies and there is an urgent need to understand and mitigate mechanisms of resistance. MicroRNAs are key post-transcriptional regulators of gene expression that regulate many aspects of cancer biology, including immune evasion. We used network analysis to define two core microRNA-mRNA networks in melanoma tissues and cell lines corresponding to 'MITF-low' and 'Keratin' transcriptomic subsets of melanoma. We then evaluated expression of these core microRNAs in pre-PD-1-inhibitor-treated melanoma patients and observed that higher expression of miR-100-5p and miR-125b-5p were associated with significantly improved overall survival. These findings suggest that miR-100-5p and 125b-5p are potential markers of response to PD-1 inhibitors, and further evaluation of these microRNA-mRNA interactions may yield further insight into melanoma resistance to PD-1 inhibitors.

15.
Stroke ; 52(7): 2381-2392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940958

RESUMO

Background and Purpose: Stroke induces the expression of several long noncoding RNAs in the brain. However, their functional significance in poststroke outcome is poorly understood. We recently observed that a brain-specific long noncoding RNA called Fos downstream transcript (FosDT) is induced rapidly in the rodent brain following focal ischemia. Using FosDT knockout rats, we presently evaluated the role of FosDT in poststroke brain damage. Methods: FosDT knockout rats were generated using CRISPR-Cas9 genome editing on a Sprague-Dawley background. Male and female FosDT−/− and FosDT+/+ cohorts were subjected to transient middle cerebral artery occlusion. Postischemic sensorimotor deficits were evaluated between days 1 and 7 and lesion volume on day 7 of reperfusion. The developmental expression profile of FosDT was determined with real-time polymerase chain reaction and mechanistic implications of FosDT in the ischemic brain were conducted with RNA-sequencing analysis and immunostaining of pathological markers. Results: FosDT expression is developmentally regulated, with the adult cerebral cortex showing significantly higher FosDT expression than neonates. FosDT−/− rats did not show any anomalies in growth and development, fertility, brain cytoarchitecture, and cerebral vasculature. However, when subjected to transient focal ischemia, FosDT−/− rats of both sexes showed enhanced sensorimotor recovery and reduced brain damage. RNA-sequencing analysis showed that improved poststroke functional outcome in FosDT−/− rats is partially associated with curtailed induction of inflammatory genes, reduced apoptosis, mitochondrial dysfunction, and oxidative stress. Conclusions: Our study shows that FosDT is developmentally dispensable, mechanistically important, and a functionally promising target to reduce ischemic brain damage and facilitate neurological recovery.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-fos/genética , RNA Longo não Codificante/genética , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/genética , Animais , Encéfalo/metabolismo , Feminino , Masculino , Proteínas Proto-Oncogênicas c-fos/deficiência , RNA Longo não Codificante/biossíntese , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Acidente Vascular Cerebral/fisiopatologia
16.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805523

RESUMO

The intestinal epithelium serves as a dynamic barrier to protect the host tissue from exposure to a myriad of inflammatory stimuli in the luminal environment. Intestinal epithelial cells (IECs) encompass differentiated and specialized cell types that are equipped with regulatory genes, which allow for sensing of the luminal environment. Potential inflammatory cues can instruct IECs to undergo a diverse set of phenotypic alterations. Aging is a primary risk factor for a variety of diseases; it is now well-documented that aging itself reduces the barrier function and turnover of the intestinal epithelium, resulting in pathogen translocation and immune priming with increased systemic inflammation. In this study, we aimed to provide an effective epigenetic and regulatory outlook that examines age-associated alterations in the intestines through the profiling of microRNAs (miRNAs) on isolated mouse IECs. Our microarray analysis revealed that with aging, there is dysregulation of distinct clusters of miRNAs that was present to a greater degree in small IECs (22 miRNAs) compared to large IECs (three miRNAs). Further, miRNA-mRNA interaction network and pathway analyses indicated that aging differentially regulates key pathways between small IECs (e.g., toll-like receptor-related cascades) and large IECs (e.g., cell cycle, Notch signaling and small ubiquitin-related modifier pathway). Taken together, current findings suggest novel gene regulation pathways by epithelial miRNAs in aging within the gastrointestinal tissues.


Assuntos
Envelhecimento/fisiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , MicroRNAs/fisiologia , Animais , Simulação por Computador , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Intestino Grosso/citologia , Intestino Delgado/citologia , Camundongos Endogâmicos C57BL , RNA Mensageiro
17.
Neuromolecular Med ; 23(2): 305-314, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33074466

RESUMO

Social isolation (SI) increases ischemic injury and significantly delays recovery after experimental stroke. Changes in circulating microRNAs (miRNAs) have been implicated in several neurological disorders, including stroke. However, potential biomarkers to elucidate the mechanisms that underlie the detrimental effects of post-stroke isolation are unknown. Aged C57BL/6 male and female mice (18-20 months) were subjected to a 60-min middle cerebral artery occlusion followed by reperfusion and were assigned to either isolation (SI) or continued pair housing (PH) immediately after stroke. On day 15, mice were sacrificed, and plasma samples were collected for miRNAome analysis. Top candidate miRNAs and their biological functions were identified using integrated bioinformatics. The miRNAome analysis revealed a total of 21 differentially expressed miRNAs across both sexes with fold change of 3 or higher. Within the female cohort, miR-206-3p, -376a-3p, -34b-5p, -133a-5p, -466f, and -671-3p were highly altered relative to the PH housing condition. Similarly in males, miR-376c-3p, -181d-5p, -712-5p, -186-5p, -21a-3p, -30d-3p, -495-3p, -669c-5p, -335-5p, -429-3p, -31-3p, and -217-5p were identified. Following Kyoto Encyclopedia of Genes and Genomes analysis, the identified miRNAs effected distinct subset of pathways within sexes. Interactional network analysis revealed miR-495-3p (male) and miR-34b-5p (female) as pivotal nodes that targeted the largest subset of genes. We identified several sex-specific miRNAs as candidate biomarkers for post-stroke SI in aged male and female mice. Additionally, these results suggest that there is potential to use plasma-based circulating miRNAs as a source of novel biomarkers to identify biological pathways involved in post-stroke SI.


Assuntos
Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/genética , MicroRNAs/sangue , Isolamento Social , Análise Serial de Tecidos , Fatores Etários , Animais , Biomarcadores , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Abrigo para Animais , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/genética , Curva ROC , Distribuição Aleatória , Fatores Sexuais
18.
J Neuroinflammation ; 17(1): 366, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261619

RESUMO

BACKGROUND: The ability to distinguish resident microglia from infiltrating myeloid cells by flow cytometry-based surface phenotyping is an important technique for examining age-related neuroinflammation. The most commonly used surface markers for the identification of microglia include CD45 (low-intermediate expression), CD11b, Tmem119, and P2RY12. METHODS: In this study, we examined changes in expression levels of these putative microglia markers in in vivo animal models of stroke, cerebral amyloid angiopathy (CAA), and aging as well as in an ex vivo LPS-induced inflammation model. RESULTS: We demonstrate that Tmem119 and P2RY12 expression is evident within both CD45int and CD45high myeloid populations in models of stroke, CAA, and aging. Interestingly, LPS stimulation of FACS-sorted adult microglia suggested that these brain-resident myeloid cells can upregulate CD45 and downregulate Tmem119 and P2RY12, making them indistinguishable from peripherally derived myeloid populations. Importantly, our findings show that these changes in the molecular signatures of microglia can occur without a contribution from the other brain-resident or peripherally sourced immune cells. CONCLUSION: We recommend future studies approach microglia identification by flow cytometry with caution, particularly in the absence of the use of a combination of markers validated for the specific neuroinflammation model of interest. The subpopulation of resident microglia residing within the "infiltrating myeloid" population, albeit small, may be functionally important in maintaining immune vigilance in the brain thus should not be overlooked in neuroimmunological studies.


Assuntos
Biomarcadores/análise , Citometria de Fluxo/métodos , Inflamação/imunologia , Inflamação/patologia , Microglia , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Angiopatia Amiloide Cerebral/imunologia , Angiopatia Amiloide Cerebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia
19.
Chem Sci ; 9(22): 5087-5099, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29938040

RESUMO

When NMR spectra of chiral racemic organic molecules containing a Lewis basic functional group are recorded in the presence of air and water stable salts of the cobalt(iii) trication [Co((S,S)-NH2CHPhCHPhNH2)3]3+ (23+), separate signals are usually observed for the enantiomers (28 diverse examples, >12 functional groups). Several chiral molecules can be simultaneously analyzed, and enantiotopic groups in prochiral molecules differentiated (16 examples). Particularly effective are the mixed bis(halide)/tetraarylborate salts Λ-23+ 2X-BArf- (X = Cl, I; BArf = B(3,5-C6H3(CF3)2)4), which are applied in CD2Cl2 or CDCl3 at 1-100 mol% (avg 34 and 14 mol%). Job plots establish 1 : 1 binding for Λ-23+ 2Cl-BArf- and 1-phenylethyl acetate (4) or 1-phenylethanol (10), and ca. 1 : 2 binding with DMSO (CD2Cl2). Selected binding constants are determined, which range from 7.60-2.73 M-1 for the enantiomers of 10 to 28.1-22.6 M-1 for the enantiomers of 4. The NH moieties of the C2 faces of the trication are believed to hydrogen bond to the Lewis basic functional groups, as seen in the crystal structure of a hexakis(DMSO) solvate of Λ-23+ 3I-. These salts rank with the most broadly applicable chirality sensing agents discovered to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...