Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 65(6): 100558, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729350

RESUMO

Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.

2.
Diabetes ; 73(6): 903-908, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502790

RESUMO

Diabetes and obesity are risk factors for kidney disease. Whereas renal glucose production increases in diabetes, recent data suggest that gluconeogenic and oxidative capacity decline in kidney disease. Thus, metabolic dysregulation caused by diet-induced insulin resistance may sensitize the kidney for a loss in function. Here, we examined how diet-induced insulin resistance disrupts mitochondrial metabolic fluxes in the renal cortex in vivo. C57BL/6J mice were rendered insulin resistant through high-fat (HF) feeding; anaplerotic, cataplerotic, and oxidative metabolic fluxes in the cortex were quantified through 13C-isotope tracing during a hyperinsulinemic-euglycemic clamp. As expected, HF-fed mice exhibited increased body weight, gluconeogenesis, and systemic insulin resistance compared with chow-fed mice. Relative to the citric acid cycle, HF feeding increased metabolic flux through pyruvate carboxylation (anaplerosis) and phosphoenolpyruvate carboxykinase (cataplerosis) and decreased flux through the pyruvate dehydrogenase complex in the cortex. Furthermore, the relative flux from nonpyruvate sources of acetyl-CoA profoundly increased in the cortex of HF-fed mice, correlating with a marker of oxidative stress. The data demonstrate that HF feeding spares pyruvate from dehydrogenation at the expense of increasing cataplerosis, which may underpin renal gluconeogenesis during insulin resistance; the results also support the hypothesis that dysregulated oxidative metabolism in the kidney contributes to metabolic disease.


Assuntos
Dieta Hiperlipídica , Gluconeogênese , Resistência à Insulina , Córtex Renal , Camundongos Endogâmicos C57BL , Animais , Dieta Hiperlipídica/efeitos adversos , Córtex Renal/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Gluconeogênese/fisiologia , Masculino , Técnica Clamp de Glucose , Acetilcoenzima A/metabolismo , Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo
3.
J Biol Chem ; 298(4): 101729, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176280

RESUMO

Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on ß-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in ßTC3 cells, a murine pancreatic ß-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in ß-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose-6-Fosfatase , Glucose , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Camundongos , Camundongos Knockout , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...