Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1089451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026626

RESUMO

Introduction: The mucin gene is expressed in the mucous membrane of the inner layer of the internal organs. Intestinalmucin 2 (MUC2), amajor gel-formingmucin, represents a primary barrier component of mucus layers. Materials and methods: This is the first report on the role of mucin genes in growth traits in animals. In this study, we randomly studied Bengal ducks (Anas platyrhynchos) reared from day old to 10 weeks of age under an organized farm and studied the growth parameters as well as body weight and average daily body weight gain. Result and discussion: We characterized the mucin gene for Bengal ducks and observed glycosylation and EGF1 (EGF-like domain signature) as important domains for growth traits in ducks. We observed a better expression profile for the mucin gene in high-growing ducks in comparison to that of low-growing ducks with real-time PCR. Hence, the mucin gene may be employed as a marker for growth traits.

2.
Front Immunol ; 12: 664877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335567

RESUMO

CD14 (also known as the monocyte differentiation antigen) is an important immune response gene known to be primarily responsible for innate immunity against bacterial pathogens, and as a pattern recognition receptor (PRR), binds with LPS (endotoxin), lipoproteins, and lipotechoic acid of bacteria. So far very limited work has been conducted in parasitic immunology. In the current study, we reported the role of CD14 in parasitic immunology in livestock species (sheep) for the first time. Ovine CD14 is characterized as a horse-shoe shaped bent solenoid with a hydrophobic amino-terminal pocket for CD14 along with domains. High mutation frequency was observed, out of total 41 mutations identified, 23 mutations were observed to be thermodynamically unstable and 11 mutations were deleterious in nature, causing major functional alteration of important domains of CD14, an indication of variations in individual susceptibility for sheep against Haemonchus contortus infestations. In silico studies with molecular docking reveal a role of immune response against Haemonchus contortus in sheep, which is later confirmed with experimental evidence through differential mRNA expression analysis for sheep, which revealed better expression of CD14 in Haemonchus contortus infected sheep compared to that of non-infected sheep. We confirmed the above findings with supportive evidence through haematological and biochemical analyses. Phylogenetic analysis was conducted to assess the evolutionary relationship with respect to humans and it was observed that sheep may well be used as model organisms due to better genetic closeness compared to that of mice.


Assuntos
Hemoncose/imunologia , Hemoncose/veterinária , Haemonchus/imunologia , Receptores de Lipopolissacarídeos/imunologia , Doenças dos Ovinos/imunologia , Animais , Masculino , Camundongos , Simulação de Acoplamento Molecular , Filogenia , Ovinos , Doenças dos Ovinos/parasitologia , Carneiro Doméstico/imunologia , Carneiro Doméstico/parasitologia
3.
Front Immunol ; 11: 534705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488570

RESUMO

Retinoic acid inducible gene I (RIG-I) is associated to the DExD/H box RNA helicases. It is a pattern recognition receptor (PRR), playing a crucial role in the system and is a germ line encoded host sensor to perceive pathogen-associated molecular patterns (PAMPs). So far, reports are available for the role of RIG-I in antiviral immunity. This is the first report in which we have documented the role of RIG-I in parasitic immunity. Haemonchus contortus is a deadly parasite affecting the sheep industry, which has a tremendous economic importance, and the parasite is reported to be prevalent in the hot and humid agroclimatic region. We characterize the RIG-I gene in sheep (Ovis aries) and identify the important domains or binding sites with Haemonchus contortus through in silico studies. Differential mRNA expression analysis reveals upregulation of the RIG-I gene in the abomasum of infected sheep compared with that of healthy sheep, further confirming the findings. Thus, it is evident that, in infected sheep, expression of RIG-I is triggered for binding to more pathogens (Haemonchus contortus). Genetically similar studies with humans and other livestock species were conducted to reveal that sheep may be efficiently using a model organism for studying the role of RIG-I in antiparasitic immunity in humans.


Assuntos
Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica/imunologia , Hemoncose , Haemonchus/imunologia , Doenças dos Ovinos , Carneiro Doméstico , Animais , Hemoncose/imunologia , Hemoncose/veterinária , Humanos , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Carneiro Doméstico/imunologia , Carneiro Doméstico/parasitologia
4.
Mitochondrion ; 46: 393-404, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30660753

RESUMO

Cytochrome B is the mitochondrial protein, which functions as part of the electron transport chain and is the main subunit of transmembrane cytochrome bc1 and b6f complexes affecting energy metabolism through oxidative phosphorylation. The present study was conducted to study the effect of mutation of Cytochrome B gene on the health condition of sheep, which the first report of association of mitochondrial gene with disease traits in livestock species. Non-synonymous substitutions (F33 L and D171N) and Indel mutations were observed for Cytochrome B gene, leading to a truncated protein, where anemia, malfunctioning of most of the vital organs as liver, kidney and mineral status was observed and debility with exercise intolerance and cardiomyopathy in extreme cases were depicted. These findings were confirmed by bioinformatics analysis, haematological and biochemical data analysis, and other phenotypical physiological data pertaining to different vital organs. The molecular mechanism of cytochrome B mutation was that the mutant variant interferes with the site of heme binding (iron containing) domain and calcium binding essential for electron transport chain. Mutation at amino acid site 33 is located within transmembrane helix A, a hydrophobic environment at the Qi site and close to heme binding domain, and mutation effects these domain and diseases occur. Thermodynamic stability was also observed to decrease in mutant variant. Sheep Cytochrome B being genetically more similar to the human, it may be used as a model for studying human diseases related to cytochrome B defects. Future prospect of the study includes the therapeutic application of recombinant protein, gene therapy and marker-assisted selection of disease-resistant livestock.


Assuntos
Citocromos b/genética , Mutação INDEL , Doenças Mitocondriais/veterinária , Mutação de Sentido Incorreto , Doenças dos Ovinos/genética , Doenças dos Ovinos/patologia , Animais , Citocromos b/química , Citocromos b/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Conformação Proteica , Ovinos
5.
Theriogenology ; 119: 121-130, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006127

RESUMO

Cytochrome B is an important polypeptide of the mitochondria helpful in energy metabolism through oxidative phosphorylation. Cytochrome B plays an immense role in the reproduction of animals and due to its mutation prone nature, it can affect the basic physiology of animals. Cytochrome B affects reproductive system in males and equally plays an important role in transferring and providing energy in the development of the embryo, zygote, and oocytes precisely in females. The present study was conducted on Ghungroo pig to study their molecular and reproductive traits and the effect of the cytochrome B gene in the female reproduction of the Ghungroo pig. Although studies are available for cytochrome B gene analysis for evolutionary studies through phylogenetic analysis. This is the first report for the study of Cytochrome B gene on reproduction in pigs. Cytochrome B gene was sequenced and seven SNPs were observed out of which three were non-synonymous. INDEL mutation was detected in Variant B which had lead to Frame Shift mutation resulting in a stop codon AGA. The effect in the reproductive traits of the sow was studied due to the occurrence of nucleotide substitution. Bioinformatics analysis (I-mutant, PROVEAN, and SIFT) had revealed that the mutations were deleterious for the mutant type. Mutation leading to alterations in post-translational modification sites as phosphorylation site, leucine-rich nuclear export signal, occurrence of transmembrane helices, arginine and lysine peptide cleavage site for the mutant variant had resulted in a reduced physiological response. 3 D protein structure, (predicted through bioinformatics analysis) for cytochrome B has revealed distinct structural differences in mutated form with truncated protein by RMSD analysis through TM-Align software. Associated studies of genotype variants with reproductive traits have revealed the significant effect of variants of cytochrome B gene on reproductive traits namely litter size at first, second and third furrowing, piglet mortality, age at first furrowing and furrowing interval. Mitochondrial gene as Cytochrome B variants might be used as a marker for studying female reproduction of Ghungroo sow in future.


Assuntos
Citocromos b/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Marcadores Genéticos , Modelos Moleculares , Gravidez , Conformação Proteica , Processamento de Proteína Pós-Traducional , Suínos/fisiologia
6.
Bioinformation ; 12(3): 182-191, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149053

RESUMO

Tuberculosis, a life threatening disease caused by different strains of Mycobacterium tuberculosis is creating an alarming condition due to the emergence of increasing multi drug resistance (MDR) trait. In this study, in silico approach was used for the identification of a conserved novel virulent factor in Mycobacterium tuberculosis EAI5 (Accession no.CP006578) which can also act as potential therapeutic target. Systematic comparative search of genes that are common to strain EAI5 and other human pathogenic strains of M. tuberculosis enlisted 408 genes. These were absent in the non-pathogenic Mycobacterium smegmatis MC2155 and in the human genome. Among those genes, only the protein coding hypothetical genes (97 out of 408) and their corresponding products were selected for further exploration. Of these, 11 proteins were found to have notable conserved domains, of which one hypothetical protein (NCBI Acc No. AGQ35418.1) was selected for further in silico exploration which was found to have two functional domains, one having phosphatidylinositol specific phospholipase C (PI-PLC) activity while the other short domain with weak lectin binding activity. As PI-PLC contributes virulence property in some pathogenic bacteria with a broad range of activities, different bioinformatic tools were used to explore its physicochemical and other important properties which indicated its secretary nature. This PI-PLC was previously not reported as drug/vaccine target to the best of our knowledge. Its predicted 3D structure can be explored for development of inhibitor for novel therapeutic strategies against MDR-TB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...