Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400484, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962951

RESUMO

Photoactive metal complexes of bioessential transition metal ions with natural chelators are gaining interest as photocytotoxic agents for cancer photodynamic therapy (PDT). We report six new cobalt(III) complexes with a mixed-ligand formulation [Co(B)2(L)](ClO4)2 (Co1-Co6), where B represents a N,N-donor α-diimine ligand, namely, phenanthroline (phen; Co1, Co2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq; Co3, Co4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz; Co5, Co6), and L is the monoanionic form of the naturally occurring flavonoids chrysin (chry; Co1, Co3, Co5) and silibinin (sili; Co2, Co4, Co6). Complexes displayed a d-d absorption band within 500-700 nm and exhibited excellent dark and photostability in solution. Cytotoxicity studies indicated significant activity of Co5 and Co6 against cervical (HeLa) and lung (A549) cancer cells under visible light (400-700 nm) irradiation giving low micromolar IC50 values (2.3-3.4 µM, phototoxicity index ~ 15-30). The complexes demonstrated notably low toxicity against normal HPL1D lung epithelial cells. Flow cytometry assay revealed an apoptotic mode of cell damage triggered by the complexes when irradiated. ROS generation assay indicated the involvement of singlet oxygen species in the cell death mechanism when irradiated with light. Overall, complexes Co5 and Co6 with coordinated dipyridophenazine and flavonoid ligands are potential candidates for cancer PDT applications.

2.
J Med Chem ; 67(13): 11125-11137, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38905437

RESUMO

The design of the dinuclear Ru(II) complex (Ru2) with strong near-infrared (NIR) absorption properties has been reported for efficient anticancer phototherapy. Under 700 nm LED light excitation, Ru2 exhibited remarkable synergistic type I/II photosensitization ability and photocatalytic activity toward intracellular biomolecules. Ru2 showed impressive 700 nm light-triggered anticancer activity under normoxia and hypoxia compared with the clinically used photosensitizer Chlorin e6. The mechanistic studies showed that Ru2 induced intracellular redox imbalance and perturbed the energy metabolism and biosynthesis in A549 cancer cells. Overall, this work provides a new strategy for developing efficient metal-based complexes for anticancer phototherapy under NIR light.


Assuntos
Antineoplásicos , Complexos de Coordenação , Raios Infravermelhos , Fármacos Fotossensibilizantes , Rutênio , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Células A549 , Ensaios de Seleção de Medicamentos Antitumorais , Fotoquimioterapia , Proliferação de Células/efeitos dos fármacos
3.
Langmuir ; 40(23): 12226-12238, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814099

RESUMO

We have red-shifted the light absorbance property of a Re(I)-tricarbonyl complex via distant conjugation of a ferrocene moiety and developed a novel complex ReFctp, [Re(Fctp)(CO)3Cl], where Fctp = 4'-ferrocenyl-2,2':6',2″-terpyridine. ReFctp showed green to red light absorption ability and blue emission, indicating its potential for photodynamic therapy (PDT) application. The conjugation of ferrocene introduced ferrocene-based transitions, which lie at a higher wavelength within the PDT therapeutic window. The time-dependent density functional theory and excited state calculations revealed an efficient intersystem crossing for ReFctp, which is helpful for PDT. ReFctp elicited both PDT type I and type II pathways for reactive oxygen species (ROS) generation and facilitated NADH (1,4-dihydro-nicotinamide adenine dinucleotide) oxidation upon exposure to visible light. Importantly, ReFctp showed effective penetration through the layers of clinically relevant 3D multicellular tumor spheroids and localized primarily in mitochondria (Pearson's correlation coefficient, PCC = 0.65) of A549 cancer cells. ReFctp produced more than 20 times higher phototoxicity (IC50 ∼1.5 µM) by inducing ROS generation and altering mitochondrial membrane potential in A549 cancer cells than the nonferrocene analogue Retp, [Re(CO)3(tp)Cl], where tp = 2,2':6',2″-terpyridine. ReFctp induced apoptotic mode of cell death with a notable photocytotoxicity index (PI, PI = IC50dark/IC50light) and selectivity index (SI, SI = normal cell's IC50dark/cancer cell's IC50light) in the range of 25-33.


Assuntos
Antineoplásicos , Compostos Ferrosos , Luz , Metalocenos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Humanos , Metalocenos/química , Metalocenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Teoria da Densidade Funcional , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/efeitos da radiação , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Luz Vermelha
4.
ACS Appl Mater Interfaces ; 16(22): 28118-28133, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783713

RESUMO

Growing challenges with antibiotic resistance pose immense challenges in combating microbial infections and biofilm prevention on medical devices. Lately, antibacterial photodynamic therapy (aPDT) is now emerging as an alternative therapy to overcome this problem. Herein, we synthesized and characterized four Ru(II)-complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(dpq)Cl]PF6 (Ru2), [Ru(ph-tpy)(dppz)Cl]PF6 (Ru3), and [Ru(ph-tpy)(dppn)Cl]PF6 (Ru4) (where 4'-phenyl-2,2':6',2″-terpyridine = ph-tpy; 2,2'-bipyridine = bpy; dipyrido[3,2-f:2',3'-h]quinoxaline = dpq; dipyrido[3,2-a:2',3'-c]phenazine = dppz; and Benzo[I]dipyrido[3,2-a:2',3'-c]phenazine = dppn), among which Ru2-Ru4 are novel. Octahedral geometry of the complexes with a RuN5Cl core was evident from the crystal structure of Ru2. Ru1-Ru4 showed an MLCT absorption band in the 450-600 nm region, useful for aPDT performances. Further, optimum triplet excited state energy and excellent photostability of Ru1-Ru4 made them good photosensitizers for aPDT. Ru1-Ru4 demonstrated enhanced antimicrobial activity on visible-light exposure (400-700 nm, 10 J cm-2), confirmed using different antibacterial assays. Mechanistic studies revealed that inhibition of bacterial growth was due to the generation of oxidative stress (via NADH oxidation and ROS generation) upon treatment with Ru2-Ru4, resulting in destruction of the bacterial wall. Ru2 performed best killing performance against both Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria when exposed to light. Ru2-Ru4, when coated on a polydimethylsiloxane (PDMS) disk, showed long-term reusability and durable antibiofilm properties. Molecular docking confirmed the efficient interaction of Ru2-Ru4 with FabH (regulates fatty acid biosynthesis of E. coli) and PgaB (gives structural stability and helps biofilm formation of E. coli), resulting in probable downregulation. In vivo studies with healthy Wistar rats confirmed the biocompatibility of Ru2. This study shows that these lead complexes (Ru2-Ru4) can be used as potent alternative antimicrobial agents in low concentrations toward bacterial eradication with photodynamic therapy (PDT).


Assuntos
Antibacterianos , Biofilmes , Luz , Rutênio , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Rutênio/química , Rutênio/farmacologia , Testes de Sensibilidade Microbiana , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química
5.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603561

RESUMO

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Assuntos
Antineoplásicos , Fenantrolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Células HeLa , Fenantrolinas/química , Fenantrolinas/farmacologia , Rênio/química , Rênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Apoptose/efeitos dos fármacos , Luz , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Fotoquimioterapia , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
6.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38578920

RESUMO

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Assuntos
Antineoplásicos , Complexos de Coordenação , Luz , Piridinas , Rutênio , Humanos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Luz Verde , Células HeLa , Estrutura Molecular , Processos Fotoquímicos , Piridinas/química , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Rutênio/farmacologia
7.
Nanoscale Adv ; 6(7): 1837-1846, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38545290

RESUMO

The 16e square-planar bis-thiolato-Au(iii) complexes [AuIII(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)2][NBu4] (Au-1) and [AuIII(4-methyl-1,2-benzenedithiolato)2][NBu4] (Au-2) have been synthesized and fully characterized. Au-1 and Au-2 were encapsulated in the symmetrical triblock copolymer poloxamer (Pluronic®) P123 containing blocks of poly(ethylene oxide) and poly(propylene oxide), giving micelles AuMs-1 and AuMs-2. High electron flux in scanning transmission electron microscopy (STEM) was used to generate single gold atoms and gold nanocrystals on B/S-doped graphitic surfaces, or S-doped amorphous carbon surfaces from AuMs-1 and AuMs-2, respectively. Electron energy loss spectroscopy (EELS) data suggested strong interactions of gold atoms/nanocrystals with boron in the B/S-doped graphitic matrix. Density-functional theory (DFT) calculations, also supported the experimental findings, pointing towards strong Au-B bonds, depending on the charge on the Au-(B-graphene) fragment and the presence of further defects in the graphene lattice.

8.
Dalton Trans ; 53(11): 4952-4961, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38275106

RESUMO

Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 µM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 µM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Fenantrolinas/química , Oxiquinolina/farmacologia , Ligantes , Cobalto , Células HEK293 , Complexos de Coordenação/química , Cobre/química
9.
Chembiochem ; 25(2): e202300652, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921481

RESUMO

The increase in antibacterial drug resistance is threatening global health conditions. Recently, antibacterial photodynamic therapy (aPDT) has emerged as an effective antibacterial treatment with high cure gain. In this work, three Zn(II) complexes viz., [Zn(en)(acac)Cl] (1), [Zn(bpy)(acac)Cl] (2), [Zn(en)(cur)Cl] (3), where en=ethylenediamine (1 and 3), bpy=2,2'-bipyridine (2), acac=acetylacetonate (1 and 2), cur=curcumin monoanionic (3) were developed as aPDT agents. Complexes 1-3 were synthesized and fully characterized using NMR, HRMS, FTIR, UV-Vis. and fluorescence spectroscopy. The HOMO-LUMO energy gap (Eg), and adiabatic splittings (ΔS1-T1 and ΔS0-T1 ) obtained from DFT calculation indicated the photosensivity of the complexes. These complexes have not shown any potent antibacterial activity under dark conditions but the antibacterial activity of these complexes was significantly enhanced upon light exposure (MIC value up to 0.025 µg/mL) due to their light-mediated 1 O2 generation abilities. The molecular docking study suggested that complexes 1-3 interact efficiently with DNA gyrase B (PDB ID: 4uro). Importantly, 1-3 did not show any toxicity toward normal HEK-293 cells. Overall, in this work, we have demonstrated the promising potential of Zn(II) complexes as effective antibacterial agents under the influence of visible light.


Assuntos
Complexos de Coordenação , Curcumina , Fotoquimioterapia , Humanos , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Complexos de Coordenação/química , Teoria da Densidade Funcional , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/química , Zinco/química
10.
Dalton Trans ; 52(46): 17562-17572, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37965840

RESUMO

Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.


Assuntos
Complexos de Coordenação , Vitamina B 6 , Humanos , Piridinas/farmacologia , Piridinas/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Vitaminas , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
11.
J Phys Chem B ; 127(48): 10266-10278, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37988143

RESUMO

Photodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2'-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Fotoquimioterapia , Humanos , Curcumina/farmacologia , Teoria da Densidade Funcional , Zinco/química , Caspase 9/metabolismo , Simulação de Acoplamento Molecular , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/química , Antineoplásicos/química
12.
ChemMedChem ; 18(19): e202300326, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37436090

RESUMO

In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.


Assuntos
Antimaláricos , Complexos de Coordenação , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Malária/tratamento farmacológico , Cloroquina/farmacologia , Mefloquina/uso terapêutico , Resistência a Medicamentos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico
14.
Chem Asian J ; 18(9): e202300047, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36894498

RESUMO

The rapid efflux of Pt-based chemotherapeutics by cancer cells is one of the major causes of drug resistance in clinically available drugs. Therefore, both the high cellular uptake as well as adequate retention efficiency of an anticancer agent are important factors to overcome drug resistance. Unfortunately, rapid and efficient quantification of metallic drug concentration in individual cancer cells still remains a tricky problem. Herein, with the help of newly developed single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), we have found that the well-known Ru(II)-based complex, Ru3, displayed remarkable intracellular uptake and retention efficiency in every single cancer cell with high photocatalytic therapeutic activity to overcome cisplatin resistance. Moreover, Ru3 has shown sensational photocatalytic anticancer properties with excellent in-vitro and in-vivo biocompatibility under light exposure.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Detecção Precoce de Câncer , Antineoplásicos/farmacologia , Antineoplásicos/química , Cisplatino/química , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
15.
Angew Chem Int Ed Engl ; 62(22): e202301074, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36961095

RESUMO

The development of PtIV prodrugs that are reduced into the therapeutically active PtII species within the tumor microenvironment has received much research interest. In order to provide spatial and temporal control over the treatment, there is a high demand for the development of compounds that could be selectively activated upon irradiation. Despite recent progress, the majority of PtIV complexes are excited with ultraviolet or blue light, limiting the use of such compounds to superficial application. To overcome this limitation, herein, the first example of PtIV prodrug nanoparticles that could be reduced with deeply penetrating ultrasound radiation is reported, enabling the treatment of deep-seated or large tumors. The nanoparticles were found to selectively accumulate inside a mouse colon carcinoma tumor upon intravenous injection and were able to eradicate the tumor upon exposure to ultrasound radiation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Platina/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Chem Commun (Camb) ; 59(21): 3083-3086, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36807352

RESUMO

A novel axisymmetric bis-tridentate Ir(III) photocatalyst (Ir3) with synergetic type I/II photosensitization and photocatalytic activity was reported. Ir3 exhibited high photocytotoxicity toward drug-resistant cancer cells under normoxia and hypoxia. The photoactivated anticancer mechanism of Ir3 were investigated in detail. Overall, this new photo-redox catalyst can overcome hypoxia and drug resistance-related problems in clinical anticancer therapy.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fototerapia , Catálise , Hipóxia/tratamento farmacológico
17.
Chembiochem ; 24(10): e202300033, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36763497

RESUMO

Four new CoII complexes, [Co(bpy)2 (acac)]Cl (1), [Co(phen)2 (acac)]Cl (2), [Co(bpy)2 (cur)]Cl (3), [Co(phen)2 (cur)]Cl (4), where bpy=2,2'-bipyridine (1 and 3), phen=1,10-phenanthroline (2 and 4), acac=acetylacetonate (1 and 2), cur=curcumin monoanion (3 and 4) have been designed, synthesized and fully characterized. The X-ray crystal structures of 1 and 2 indicated that the CoN4 O2 core has a distorted octahedral geometry. The photoactivity of these complexes was tuned by varying the π conjugation in the ligands. Curcumin complexes 3 and 4 had an intense absorption band near 435 nm, which made them useful as visible-light photodynamic therapy agents; they also showed fluorescence with λem ≈565 nm. This fluorescence was useful for studying their intracellular uptake and localization in MCF-7 breast cancer cells. The acetylacetonate complexes (1 and 2) were used as control complexes to understand the role of curcumin. The white-light-triggered anticancer profiles of the cytosol targeting complexes 3 and 4 were investigated in detail. These non-dark toxic complexes displayed significant apoptotic photo-cytotoxicity (under visible light) against MCF-7 cells through ROS generation. The control complexes 1 and 2 did not induce significant cell death in the light or dark. Interestingly, 1-4 produced a remarkable antibacterial response upon light exposure. Overall, the reported results here can increase the boundary of the CoII -based anticancer and antibacterial drug development.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Fotoquimioterapia , Humanos , Curcumina/farmacologia , Curcumina/química , Hidroxibutiratos , Pentanonas , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antibacterianos/farmacologia
18.
J Org Chem ; 88(1): 626-631, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36522290

RESUMO

Recently, interest has been given to developing photocatalytic anticancer drugs. This area of research is dominated by metal complexes. Here, we report the potential of lysosome/mitochondria targeting cyanine appended bipyridine compounds as the organic photocatalytic anticancer agents. The organocatalyst (bpyPCN) not only exhibits light-induced NADH oxidation but also generates intracellular ROS to demonstrate anticancer activity. This is the first example of organic compound induced catalytic NADH photo-oxidation in an aqueous solution and in cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , 2,2'-Dipiridil/farmacologia , Oxirredução , NAD , Antineoplásicos/farmacologia
19.
Chembiochem ; 24(6): e202200597, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36385722

RESUMO

Sonodynamic therapy (SDT) for cancer treatment is gaining attention owing to its non-invasive property and ultrasound's (US) deep tissue penetration ability. In SDT, US activates the sonosensitizer at the target deep-seated tumors to generate reactive oxygen species (ROS), which ultimately damage tumors. However, drawbacks such as insufficient ROS production, aggregation of sonosensitizer, off-target side effects, etc., of the current organic/nanomaterial-based sonosensitizers limit the effectiveness of cancer SDT. Very recently, metal complexes with tunable physiochemical properties (such as sonostability, HOMO to LUMO energy gap, ROS generation ability, aqueous solubility, emission, etc.) have been devised as effective sonosensitizers, which could overcome the limitations of organic/nanomaterial-based sonosensitizers. This concept introduces all the reported metal-based sonosensitizers and delineates the prospects of metal complexes in cancer sonodynamic therapy. This new concept of metal-based sonosensitizer can deliver next-generation cancer drugs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
20.
Chemistry ; 28(72): e202202233, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36184567

RESUMO

Photodynamic therapy (PDT) for cancer treatment has garnered tremendous attention with its promising non-invasiveness, low side effects, and spatiotemporal selectivity. However, the hypoxic microenvironment in solid tumours remains a serious resistant factor to reducing the effects of PDT. Endoperoxides are successfully utilized as the chemical storage or supplier of singlet oxygen (1 O2 ), the active substance for PDT in materials and other domains. Recent reports indicated that this type of compound could remarkably enhance the therapeutic effects of PDT under hypoxia. This concept mainly introduces a few representative endoperoxides and the outlook of their potent application for treating hypoxic cancer cells.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia/tratamento farmacológico , Oxigênio Singlete , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes , Linhagem Celular Tumoral , Oxigênio , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA