Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biol Open ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602383

RESUMO

Chronic gastritis is one of the major symptoms of gastro-duodenal disorders typically induced by Helicobacter pylori (H. pylori). To date, no suitable model is available to study pathophysiology and therapeutic measures accurately. Here, we have presented a successful surgical infection model of H. pylori-induced gastritis in C57BL/6 mice that resembles features similar to human infection. The proposed model does not require any preparatory treatment other than surgical intervention. C57BL/6 mice were injected with wild-type SS1 (Sydney strain 1, reference strain) directly into the stomach. Seven days post infection, infected animals showed alterations in cytokine responses along with inflammatory cell infiltration in the lamina propria, depicting a prominent inflammatory response due to infection. To understand the immunogenicity and protective efficacy, the mice were immunized with outer membrane vesicles (OMVs) isolated from an indigenous strain with putative virulence factors of H. pylori [A61C (1), cag+/vacA s1m1]. In contrast to the non-immunized cohort, the OMV-immunized cohort showed a gradual increase in serum immunoglobulin(s) levels on the 35th day after the first immunization. This conferred protective immunity against subsequent challenge with the reference strain (SS1). Direct inoculation of H. pylori into the stomach influenced infection in a short time and, more importantly, in a dose-dependent manner, indicating the usefulness of the developed model for pathophysiology, therapeutic and prophylactic studies.

2.
Vaccine ; 42(7): 1454-1460, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38030421

RESUMO

The global nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, on November 29 to December 1, 2022. With a combination of plenary sessions and posters, keynote presentations, and breakout workshops, the 2022 VASE Conference featured key updates on research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and Salmonella. The presentations and discussions highlighted the significant impact of these diarrheal pathogens, particularly on the health of infants and young children in low- and middle-income countries, reflecting the urgent need for the development and licensure of new enteric vaccines. Oral and poster presentations at the VASE Conference explored a range of topics, including: the global burden and clinical presentation of disease, epidemiology, and the impact of interventions; the assessment of the value of vaccines against enteric pathogens; preclinical evaluations of vaccine candidates and models of enteric diseases; vaccine candidates in clinical trials and human challenge models; host parameters and genomics that predict responses to infection and disease; the application of new omics technologies for characterization of emerging pathogens and host responses; novel adjuvants, vaccine delivery platforms, and immunization strategies; and strategies for combination/co-administered vaccines. The conference agenda also featured ten breakout workshop sessions on topics of importance to the enteric vaccine field, which are summarized separately. This article reviews key points and highlighted research presented in each of the plenary conference sessions and poster presentations at the 2022 VASE Conference.


Assuntos
Disenteria Bacilar , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Vacinas contra Escherichia coli , Oligopeptídeos , Vacinas contra Shigella , Shigella , Humanos , Diarreia/epidemiologia
3.
Immunol Lett ; 263: 33-45, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734682

RESUMO

Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.


Assuntos
Diarreia , Lipopolissacarídeos , Humanos , Adulto , Animais , Camundongos , Criança , Animais Recém-Nascidos , Imunidade Humoral , Escherichia coli
4.
Vaccine ; 41(41): 5994-6007, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37625993

RESUMO

Typhoid and emerging paratyphoid fever are a severe enteric disease worldwide with high morbidity and mortality. Licensed typhoid vaccines are in the market, but no paratyphoid vaccine is currently available. In the present study we developed a bivalent vaccine against Salmonella Typhi and Paratyphi A using a bacterial ghost platform. Bacterial ghost cells (BGs) are bacteria-derived cell membranes without cytoplasmic contents that retain their cellular morphology, including all cell surface features. Furthermore, BGs have inherent adjuvant properties that promote an enhanced humoral and cellular immune reaction to the target antigen. Sodium hydroxide was used to prepare ghost cells of Salmonella Typhi and Paratyphi A. The bacterial ghost cells were characterised using electron microscopy. Then BALB/c mice were immunized three times (0th, 14th and 28th day) with the bivalent typhoidal bacterial ghost cells. Haematological study of adult mice throughout immunization period reflected that the immunogen was safe to administer and does not affect the animals' health. After complete immunization, we found significant serum antibody titter against whole cell lysate, outer membrane protein and lipopolysaccharide of both bacteria, and cell-mediated immunity was observed in an ex-vivo experiment. CD4+, CD8a+ and CD19+ splenic cell populations were increased in immunized animals. Bivalent Typhoidal ghost cell immunized mice showed better survival, less bacterial colonization in systemic organs, and less inflammation and/or destruction of tissue in histopathological analysis than non-immunized control mice.Serum antibodies of immunized animals can significantly inhibit bacterial motility and mucin penetration ability with better killing properties against Salmonella Typhi and Paratyphi A. Furthermore, significant passive protection was observed through the adoptive transfer of serum antibody and lymphocytes of immunized animals to naïve animals after bacterial infection. In summary, Bivalent Typhoidal Bacterial Ghost cells (BTBGs) enhances immunogenic properties and serves as a safe and effective prevention strategy against Salmonella Typhi and Paratyphi A.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Camundongos , Animais , Salmonella typhi , Salmonella paratyphi A , Camundongos Endogâmicos BALB C , Febre Tifoide/prevenção & controle
5.
Microbes Infect ; 25(5): 105100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696935

RESUMO

In today's world and mostly in low and middle income countries, Shigella flexneri and Shigella sonnei remains the major causative agent of clinical bacillary dysentery. Based on contemporary epidemiology, a tetravalent Outer Membrane Vesicle (OMVs) based immunogen was formulated using the most commonly circulating Shigella strains, namely, S. flexneri 2a, S. flexneri 3a, S. flexneri 6 and S. sonnei I, in a 1:1:1:1 ratio. Adult BALB/c mice were orally immunized in a prime-boost-boost manner. Tetravalent Shigella OMVs immunogen induced significant and persistent serum and mucosal antibodies against OMVs, Outer Membrane Proteins (OMPs) and lipopolysaccharides (LPS). Tetravalent OMVs also primed cell mediated immune response effectively. Protective efficacy against six heterologous Shigella strains was checked in an intra-peritoneal mouse model. Immunized mice survived lethal infection better than the non-immunized mice cohort with fewer replicating bacteria isolated from their gut. This study establishes the possibilities of tetravalent OMVs immunogen to become a potent vaccine candidate against human shigellosis, overcoming the limitations of sero-specific cross-protection of Shigella species.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Vacinas , Animais , Adulto , Humanos , Camundongos , Sorogrupo , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/microbiologia , Shigella flexneri , Anticorpos Antibacterianos
6.
Immunobiology ; 227(2): 152183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121180

RESUMO

Poultry animals act as natural reservoirs of invasive non-typhoidal Salmonella [iNTS] serovars and consumption of iNTS contaminated poultry meat and eggs is one of the major sources of iNTS infection in developed and developing countries. Irrational use of antibiotics in the poultry industry gives rise to the global emergence of multi drug resistant iNTS strains. Among different strategies to control iNTS infection in poultry farms, vaccination is now being widely used. There are several licensed vaccines available in the market for poultry animals to ameliorate iNTS infection but none of them have broad spectrum protective efficacy. In this study we have formulated a single novel trivalent iNTS outer membrane vesicles [OMVs] based immunogen which can confer long term broad spectrum protection against most prevalent iNTS serovars. We have isolated OMVs from Salmonella Typhimurium [ST], Salmonella Enteritidis [SE], and Salmonella Gallinarum [SG] and formulated the trivalent immunogen by mixing OMVs in a 1:1:1 ratio. One day old chicks were immunized thrice via oral route at two week intervals. Vaccination significantly induced serovar specific antibodies detected up to 180 days post immunization. Post challenge with both homologous and heterologous [S. Infantis] serovars, immunized birds showed reduced level of fecal shedding and organ invasion. A long term efficacy study also showed reduced levels of tissue invasion up to one year post immunization. These results demonstrate that our novel formulation of immunogen could be a broad spectrum potential vaccine for both layer and broiler breeds against iNTS mediated salmonellosis and fowl typhoid.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Febre Tifoide , Animais , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella enteritidis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...