Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 36(1): 131-137, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32372236

RESUMO

The current work explores the surface morphology of the laser-ablated bone using Yb-fiber coupled Nd:YAG laser (λ = 1064 nm) in continuous wave mode. As the laser-ablated region contains physiochemically modified carbonized and nonstructural region, it becomes unknown material for the body. Thus, biomineralization on such a laser-ablated region was assessed by in vitro immersion test in noncellular simulated body fluid. The presence of hydroxyapatite was detected in the precipitated mineral product using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction analysis. The effect of varying laser parameters on distribution of surface morphology features was identified and its corresponding effect on biomineralization was studied.


Assuntos
Biomineralização/efeitos da radiação , Osso e Ossos/efeitos da radiação , Lasers de Estado Sólido , Osso e Ossos/ultraestrutura , Durapatita/química , Espectrometria por Raios X , Propriedades de Superfície , Temperatura , Difração de Raios X
2.
Front Mol Biosci ; 7: 577938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195421

RESUMO

Circular RNAs (circRNAs) are rapidly coming to the fore as major regulators of gene expression and cellular functions. They elicit their influence via a plethora of diverse molecular mechanisms. It is not surprising that aberrant circRNA expression is common in cancers and they have been implicated in multiple aspects of cancer pathophysiology such as apoptosis, invasion, migration, and proliferation. We summarize the emerging role of circRNAs as biomarkers and therapeutic targets in cancer.

3.
Toxicol Mech Methods ; 22(5): 347-58, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22424133

RESUMO

Prolyl hydroxylases belong to the family of iron- and 2-oxoglutamate-dependent dioxygenase enzyme. Several distinct prolyl hydroxylases have been identified. The hypoxia-inducible factor (HIF) prolyl hydroxylase termed prolyl hydroxylase domain (PHD) enzymes play an important role in oxygen regulation in the physiological network. There are three isoforms that have been identified: PHD1, PHD2 and PHD3. Deletion of PHD enzymes result in stabilization of HIFs and offers potential treatment options for many ischemic disorders such as peripheral arterial occlusive disease, myocardial infarction, and stroke. All three isoforms are oxygen sensors that regulate the stability of HIFs. The degradation of HIF-1α is regulated by hydroxylation of the 402/504 proline residue by PHDs. Under hypoxic conditions, lack of oxygen causes hydroxylation to cease HIF-1α stabilization and subsequent translocation to the nucleus where it heterodimerizes with the constitutively expressed ß subunit. Binding of the HIF-heterodimer to specific DNA sequences, named hypoxia-responsive elements, triggers the transactivation of target genes. PHD regulation of HIF-1α-mediated cardioprotection has resulted in considerable interest in these molecules as potential therapeutic targets in cardiovascular and ischemic diseases. In recent years, attention has been directed towards identifying small molecule inhibitors of PHD. It is postulated that such inhibition might lead to a clinically useful strategy for protecting the myocardium against ischemia and reperfusion injury. Recently, it has been reported that the orally absorbed PHD inhibitor GSK360A can modulate HIF-1α signaling and protect the failing heart following myocardial infarction. Furthermore, PHD1 deletion has been found to have beneficial effects through an increase in tolerance to hypoxia of skeletal muscle by reprogramming basal metabolism. In the mouse liver, such deletion has resulted in protection against ischemia and reperfusion. As a result of these preliminary findings, PHDs is attracting increasing interest as potential therapeutic targets in a wide range of diseases.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Dioxigenases/fisiologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Nucleares/fisiologia , Pró-Colágeno-Prolina Dioxigenase/fisiologia , Animais , Cardiotônicos/administração & dosagem , Doenças Cardiovasculares/enzimologia , Dioxigenases/antagonistas & inibidores , Dioxigenases/genética , Inibidores Enzimáticos/administração & dosagem , Regulação Enzimológica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/genética
4.
Proc Natl Acad Sci U S A ; 104(17): 7074-9, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17438289

RESUMO

Cardiac hypertrophy is a common response to injury and hemodynamic stress and an important harbinger of heart failure and death. Herein, we identify the Kruppel-like factor 15 (KLF15) as an inhibitor of cardiac hypertrophy. Myocardial expression of KLF15 is reduced in rodent models of hypertrophy and in biopsy samples from patients with pressure-overload induced by chronic valvular aortic stenosis. Overexpression of KLF15 in neonatal rat ventricular cardiomyocytes inhibits cell size, protein synthesis and hypertrophic gene expression. KLF15-null mice are viable but, in response to pressure overload, develop an eccentric form of cardiac hypertrophy characterized by increased heart weight, exaggerated expression of hypertrophic genes, left ventricular cavity dilatation with increased myocyte size, and reduced left ventricular systolic function. Mechanistically, a combination of promoter analyses and gel-shift studies suggest that KLF15 can inhibit GATA4 and myocyte enhancer factor 2 function. These studies identify KLF15 as part of a heretofore unrecognized pathway regulating the cardiac response to hemodynamic stress.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/patologia , Animais , Pressão Sanguínea , Tamanho Celular , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Hipertrofia , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Recombinação Genética/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Circulation ; 112(5): 720-6, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16043642

RESUMO

BACKGROUND: Although 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are known to modulate endothelial function, the transcriptional mechanisms underlying these effects are incompletely understood. We hypothesized that Lung-Kruppel-like factor (LKLF/KLF2), a novel and potent regulator of endothelial gene expression, may mediate the downstream effects of statins. Here we report that statin-induced expression of endothelial NO synthase (eNOS) and thrombomodulin is KLF2 dependent. METHODS AND RESULTS: KLF2 mRNA was induced by treatment with multiple statins in a concentration-dependent manner. Multiple lines of evidence suggest that this induction is dependent on inhibition of the Rho pathway and requires de novo transcription. Furthermore, promoter deletion and mutational analyses suggest that mevastatin induced KLF2 promoter activity through a single myocyte enhancer factor binding site. Finally, small-interfering RNA-mediated knockdown of KLF2 strongly attenuated the ability of mevastatin to increase eNOS and thrombomodulin accumulation in endothelial cells. CONCLUSIONS: Taken together, these observations indicate that statin-dependent induction of eNOS and thrombomodulin requires KLF2 and thereby provides a novel molecular target for modulating endothelial function in vascular disease.


Assuntos
Endotélio Vascular/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Fatores de Transcrição Kruppel-Like/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/metabolismo , Trombomodulina/genética , Transfecção , Veias Umbilicais
6.
J Biol Chem ; 278(4): 2581-4, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12426306

RESUMO

Obesity is an important public health problem associated with a number of disease states such as diabetes and arteriosclerosis. As such, an understanding of the mechanisms governing adipose tissue differentiation and function is of considerable importance. We recently reported that the Krüppel-like zinc finger transcription factor KLF15 can induce adipocyte maturation and GLUT4 expression. In this study, we identify that a second family member, KLF2/Lung Krüppel-like factor (LKLF), as a negative regulator of adipocyte differentiation. KLF2 is highly expressed in adipose tissue, and studies in cell lines and primary cells demonstrate that KLF2 is expressed in preadipocytes but not mature adipocytes. Constitutive overexpression of KLF2 but not KLF15 potently inhibits peroxisome proliferator-activated receptor-gamma (PPARgamma) expression with no effect on the upstream regulators C/EBPbeta and C/EBPdelta. However, the expression of C/EBPalpha and SREBP1c/ADD1 (adipocyte determination and differentiation factor-1/sterol regulatory element-binding protein-1), two factors that feedback in a positive manner to enhance PPARgamma function, was also markedly reduced. In addition, transient transfection studies show that KLF2 directly inhibits PPARgamma2 promoter activity (70% inhibition; p < 0.001). Using a combination of promoter mutational analysis and gel mobility shift assays, we have identified a binding site within the PPARgamma2 promoter, which mediates this inhibitory effect. These data identify a novel role for KLF2 as a negative regulator of adipogenesis.


Assuntos
Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/biossíntese , Transativadores/metabolismo , Transativadores/fisiologia , Fatores de Transcrição/biossíntese , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Células Cultivadas , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like , Ligantes , Luciferases/metabolismo , Camundongos , Modelos Genéticos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1 , Distribuição Tecidual , Transcrição Gênica , Transfecção
7.
J Biol Chem ; 277(37): 34322-8, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12097321

RESUMO

Resistance to the stimulatory effects of insulin on glucose utilization is a key feature of type 2 diabetes, obesity, and the metabolic syndrome. Recent studies suggest that insulin resistance is primarily caused by a defect in glucose transport. GLUT4 is the main insulin-responsive glucose transporter and is expressed predominantly in muscle and adipose tissues. Whereas GLUT4 has been shown to play a critical role in maintaining systemic glucose homeostasis, the mechanisms regulating its expression are incompletely understood. We have cloned the murine homologue of KLF15, a member of the Krüppel-like family of transcription factors. KLF15 is highly expressed in adipocytes and myocytes in vivo and is induced when 3T3-L1 preadipocytes are differentiated into adipocytes. Overexpression of KLF15 in adipose and muscle cell lines potently induces GLUT4 expression. This effect is specific to KLF15 as overexpression of two other Krüppel-like factors, KLF2/LKLF and KLF4/GKLF, did not induce GLUT4 expression. Both basal (3.3-fold, p < 0.001) and insulin-stimulated (2.4-fold, p < 0.00001) glucose uptake are increased in KLF15-overexpressing adipocytes. In co-transfection assays, KLF15 and MEF2A, a known activator of GLUT4, synergistically activates the GLUT4 promoter. Promoter deletion and mutational analyses provide evidence that this activity requires an intact KLF15-binding site proximal to the MEF2A site. Finally, co-immunoprecipitation assays show that KLF15 specifically interacts with MEF2A. These studies indicate that KLF15 is an important regulator of GLUT4 in both adipose and muscle tissues.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Musculares , Proteínas Repressoras , Fatores de Transcrição/fisiologia , Células 3T3 , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/análise , Glucose/metabolismo , Transportador de Glucose Tipo 4 , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Fatores de Transcrição MEF2 , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica , Regiões Promotoras Genéticas , Fatores de Transcrição/análise , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...