Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917606

RESUMO

Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.


Assuntos
Mutação de Sentido Incorreto , Serina , Humanos , Serina/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Supressoras de Tumor/genética , Reparo do DNA/genética , Reparo de DNA por Recombinação , Predisposição Genética para Doença
2.
PLoS Genet ; 19(8): e1010739, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578980

RESUMO

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1.


Assuntos
Proteína BRCA1 , Reparo de DNA por Recombinação , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , DNA , Quebras de DNA de Cadeia Dupla , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética
3.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090572

RESUMO

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1 . AUTHOR SUMMARY: Most missense substitutions in BRCA1 are variants of unknown significance (VUS), and individuals with a VUS in BRCA1 cannot know from genetic information alone whether this variant predisposes to breast or ovarian cancer. We apply a multiplexed functional assay for homology directed repair of DNA double strand breaks to assess variant impact on this important BRCA1 protein function. We analyzed 2172 variants in the amino-terminus of BRCA1 and demonstrate that variants that are known as pathogenic have a loss of function in the DNA repair assay. Conversely, variants that are known to be benign are functionally normal in the multiplexed assay. We suggest that these functional determinations of BRCA1 variants can be used to augment the information that clinical cancer geneticists provide to patients who have a VUS in BRCA1 .

4.
Am J Hum Genet ; 109(4): 618-630, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196514

RESUMO

Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Quebras de DNA de Cadeia Dupla , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , DNA , Reparo do DNA , Feminino , Humanos , Mutação de Sentido Incorreto
5.
PLoS Genet ; 15(3): e1008049, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925164

RESUMO

The BARD1 protein, which heterodimerizes with BRCA1, is encoded by a known breast cancer susceptibility gene. While several BARD1 variants have been identified as pathogenic, many more missense variants exist that do not occur frequently enough to assign a clinical risk. In this paper, whole exome sequencing of over 10,000 cancer samples from 33 cancer types identified from somatic mutations and loss of heterozygosity in tumors 76 potentially cancer-associated BARD1 missense and truncation variants. These variants were tested in a functional assay for homology-directed repair (HDR), as HDR deficiencies have been shown to correlate with clinical pathogenicity for BRCA1 variants. From these 76 variants, 4 in the ankyrin repeat domain and 5 in the BRCT domain were found to be non-functional in HDR. Two known benign variants were found to be functional in HDR, and three known pathogenic variants were non-functional, supporting the notion that the HDR assay can be used to predict the clinical risk of BARD1 variants. The identification of HDR-deficient variants in the ankyrin repeat domain indicates there are DNA repair functions associated with this domain that have not been closely examined. In order to examine whether BARD1-associated loss of HDR function results in DNA damage sensitivity, cells expressing non-functional BARD1 variants were treated with ionizing radiation or cisplatin. These cells were found to be more sensitive to DNA damage, and variations in the residual HDR function of non-functional variants did not correlate with variations in sensitivity. These findings improve the understanding of BARD1 functional domains in DNA repair and support that this functional assay is useful for predicting the cancer association of BARD1 variants.


Assuntos
Neoplasias/genética , Reparo de DNA por Recombinação/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1/metabolismo , Gatos , Dano ao DNA , Reparo do DNA/genética , Cães , Feminino , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Alinhamento de Sequência , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Sequenciamento do Exoma
6.
Am J Hum Genet ; 103(4): 498-508, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30219179

RESUMO

Loss-of-function pathogenic variants in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for sequence changes in BRCA1 frequently reveals a missense variant for which the impact on cancer risk and on the molecular function of BRCA1 is unknown. Functional BRCA1 is required for the homology-directed repair (HDR) of double-strand DNA breaks, a critical activity for maintaining genome integrity and tumor suppression. Here, we describe a multiplex HDR reporter assay for concurrently measuring the effects of hundreds of variants of BRCA1 for their role in DNA repair. Using this assay, we characterized the effects of 1,056 amino acid substitutions in the first 192 residues of BRCA1. Benchmarking these results against variants with known effects on DNA repair function or on cancer predisposition, we demonstrate accurate discrimination of loss-of-function versus benign missense variants. We anticipate that this assay can be used to functionally characterize BRCA1 missense variants at scale, even before the variants are observed in results from genetic testing.


Assuntos
Proteína BRCA1/genética , Reparo do DNA/genética , Mutação de Sentido Incorreto/genética , Linhagem Celular Tumoral , DNA/genética , Quebras de DNA de Cadeia Dupla , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Células HeLa , Humanos , Neoplasias/genética
7.
Gynecol Oncol ; 144(3): 613-620, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28073598

RESUMO

OBJECTIVE: We analyzed histone deacetylase 10 (HDAC10) for function in the context of the DNA damage response in BRCA1-null ovarian cancer cells as well as evaluated the potential of general HDAC inhibitors in primary ovarian carcinoma cells. HDAC10 had previously been shown to be highly stimulatory to the process of homology directed repair in HeLa cells, and in this study we investigated whether HDAC10 could impact in vitro the response to anticancer therapies. We hypothesized that the loss of HDAC10 would sensitize cells to platinum therapy. METHODS: We combined informatics analysis of large DNA sequencing datasets from ovarian cancer tumors with tissue culture based assays of primary and established cell lines to test for sensitivity to platinum therapy if HDAC10 activity was inhibited or depleted. RESULTS: Using The Cancer Genome Atlas (TCGA) dataset, we found that deep deletions in HDAC10 occurred in 5-10% of ovarian cancer tumors. From the TCGA data we found that low HDAC10 mRNA levels correlated with platinum sensitivity of the tumors. Cell proliferation and DNA damage assays in a BRCA1-null ovarian carcinoma cell line demonstrated reduced DNA repair capacity and sensitization of platinum therapy. Similarly, primary ovarian carcinoma cells demonstrated a sensitization to platinum therapies when treated with HDAC inhibitors. CONCLUSIONS: From the results of this study, we suggest that the inhibition of HDAC10 may potentiate the effects of platinum therapies in ovarian tumors.


Assuntos
Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reparo de DNA por Recombinação/efeitos dos fármacos
8.
Nat Commun ; 7: 10913, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941120

RESUMO

The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development.


Assuntos
Reparo do DNA/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Envelhecimento , Animais , Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Células Epiteliais , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Homeostase , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Progestinas/metabolismo , Proteínas de Ligação a RNA , Maturidade Sexual , Transcriptoma , Proteínas Supressoras de Tumor/genética
9.
Nucleic Acids Res ; 44(5): 2136-44, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578590

RESUMO

During mitosis the chromatin undergoes dramatic architectural changes with the halting of the transcriptional processes and evacuation of nearly all transcription associated machinery from genes and promoters. Molecular bookmarking of genes during mitosis is a mechanism of faithfully transmitting cell-specific transcription patterns through cell division. We previously discovered chromatin ubiquitination at active promoters as a potential mitotic bookmark. In this study, we identify the enzymes involved in the deposition of ubiquitin before mitosis. We find that the polycomb complex proteins BMI1 and RING1A regulate the ubiquitination of chromatin associated proteins bound to promoters, and this modification is necessary for the expression of marked genes once the cells enter G1. Depletion of RING1A, and thus inactivation of mitotic bookmarking by ubiquitination, is deleterious to progression through G1, cell survival and proliferation. Though the polycomb complex proteins are thought to primarily regulate gene expression by transcriptional repression, in this study, we discover that these two polycomb proteins regulate the transcription of active genes during the mitosis to G1 transition.


Assuntos
Fase G1/genética , Histonas/genética , Mitose , Complexo Repressor Polycomb 1/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitinação
10.
Nat Commun ; 6: 10086, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26689913

RESUMO

Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.


Assuntos
Variação Genética , Neoplasias/genética , Neoplasias/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/classificação , Neoplasias/epidemiologia , Estados Unidos/epidemiologia , Adulto Jovem
11.
Hum Mutat ; 36(12): 1205-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26350354

RESUMO

Genes associated with hereditary breast and ovarian cancer (HBOC) are often sequenced in search of mutations that are predictive of susceptibility to these cancer types, but the sequence results are frequently ambiguous because of the detection of missense substitutions for which the clinical impact is unknown. The BARD1 protein is the heterodimeric partner of BRCA1 and is included on clinical gene panels for testing for susceptibility to HBOC. Like BRCA1, it is required for homology-directed DNA repair (HDR). We measured the HDR function of 29 BARD1 missense variants, 27 culled from clinical test results and two synthetic variants. Twenty-three of the assayed variants were functional for HDR; of these, four are known neutral variants. Three variants showed intermediate function, and three others were defective in HDR. When mapped to BARD1 domains, residues crucial for HDR were located in the N- and C- termini of BARD1. In the BARD1 RING domain, critical residues mapped to the zinc-coordinating amino acids and to the BRCA1-BARD1 binding interface, highlighting the importance of interaction between BRCA1 and BARD1 for HDR activity. Based on these results, we propose that the HDR assay is a useful complement to genetic analyses to classify BARD1 variants of unknown clinical significance.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Mutação de Sentido Incorreto , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Processamento Alternativo , Proteína BRCA1/metabolismo , Linhagem Celular , Evolução Molecular , Expressão Gênica , Humanos , Modelos Moleculares , Fenótipo , Ligação Proteica , Conformação Proteica , RNA Mensageiro/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
12.
Nucleic Acids Res ; 43(7): 3605-13, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25800734

RESUMO

Early steps of gene expression are a composite of promoter recognition, promoter activation, RNA synthesis and RNA processing, and it is known that SUMOylation, a post-translational modification, is involved in transcription regulation. We previously found that SUMO-1 marks chromatin at the proximal promoter regions of some of the most active housekeeping genes during interphase in human cells, but the SUMOylated targets on the chromatin remained unclear. In this study, we found that SUMO-1 marks the promoters of ribosomal protein genes via modification of the Scaffold Associated Factor B (SAFB) protein, and the SUMOylated SAFB stimulated both the binding of RNA polymerase to promoters and pre-mRNA splicing. Depletion of SAFB decreased RNA polymerase II binding to promoters and nuclear processing of the mRNA, though mRNA stability was not affected. This study reveals an unexpected role of SUMO-1 and SAFB in the stimulatory coupling of promoter binding, transcription initiation and RNA processing.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Proteínas Associadas à Matriz Nuclear/fisiologia , Regiões Promotoras Genéticas , Splicing de RNA , Receptores de Estrogênio/fisiologia , Proteínas Ribossômicas/genética , Proteína SUMO-1/metabolismo , Transcrição Gênica/fisiologia , Regulação para Baixo , Células HeLa , Humanos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
13.
Cancer Biol Ther ; 15(5): 533-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24521615

RESUMO

NUSAP1 has been reported to function in mitotic spindle assembly, chromosome segregation, and regulation of cytokinesis. In this study, we find that NUSAP1 has hitherto unknown functions in the key BRCA1-regulated pathways of double strand DNA break repair and centrosome duplication. Both these pathways are important for maintenance of genomic stability, and any defects in these pathways can cause tumorigenesis. Depletion of NUSAP1 from cells led to the suppression of double strand DNA break repair via the homologous recombination and single-strand annealing pathways. The presence of NUSAP1 was also found to be important for the control of centrosome numbers. We have found evidence that NUSAP1 plays a role in these processes through regulation of BRCA1 protein levels, and BRCA1 overexpression from a plasmid mitigates the defective phenotypes seen upon NUSAP1 depletion. We found that after NUSAP1 depletion there is a decrease in BRCA1 recruitment to ionizing radiation-induced foci. Results from this study reveal a novel association between BRCA1 and NUSAP1 and suggests a mechanism whereby NUSAP1 is involved in carcinogenesis.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Centrossomo/metabolismo , Dano ao DNA/efeitos da radiação , DNA de Cadeia Simples/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Recombinação Homóloga , Humanos , Proteínas Associadas aos Microtúbulos/genética , Pontos de Checagem da Fase S do Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...