Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Planet Health ; 8(7): e433-e440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969471

RESUMO

BACKGROUND: The evidence for acute effects of air pollution on mortality in India is scarce, despite the extreme concentrations of air pollution observed. This is the first multi-city study in India that examines the association between short-term exposure to PM2·5 and daily mortality using causal methods that highlight the importance of locally generated air pollution. METHODS: We applied a time-series analysis to ten cities in India between 2008 and 2019. We assessed city-wide daily PM2·5 concentrations using a novel hybrid nationwide spatiotemporal model and estimated city-specific effects of PM2·5 using a generalised additive Poisson regression model. City-specific results were then meta-analysed. We applied an instrumental variable causal approach (including planetary boundary layer height, wind speed, and atmospheric pressure) to evaluate the causal effect of locally generated air pollution on mortality. We obtained an integrated exposure-response curve through a multivariate meta-regression of the city-specific exposure-response curve and calculated the fraction of deaths attributable to air pollution concentrations exceeding the current WHO 24 h ambient PM2·5 guideline of 15 µg/m3. To explore the shape of the exposure-response curve at lower exposures, we further limited the analyses to days with concentrations lower than the current Indian standard (60 µg/m3). FINDINGS: We observed that a 10 µg/m3 increase in 2-day moving average of PM2·5 was associated with 1·4% (95% CI 0·7-2·2) higher daily mortality. In our causal instrumental variable analyses representing the effect of locally generated air pollution, we observed a stronger association with daily mortality (3·6% [2·1-5·0]) than our overall estimate. Our integrated exposure-response curve suggested steeper slopes at lower levels of exposure and an attenuation of the slope at high exposure levels. We observed two times higher risk of death per 10 µg/m3 increase when restricting our analyses to observations below the Indian air quality standard (2·7% [1·7-3·6]). Using the integrated exposure-response curve, we observed that 7·2% (4·2%-10·1%) of all daily deaths were attributed to PM2·5 concentrations higher than the WHO guidelines. INTERPRETATION: Short-term PM2·5 exposure was associated with a high risk of death in India, even at concentrations well below the current Indian PM2·5 standard. These associations were stronger for locally generated air pollutants quantified through causal modelling methods than conventional time-series analysis, further supporting a plausible causal link. FUNDING: Swedish Research Council for Sustainable Development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Exposição Ambiental , Mortalidade , Material Particulado , Índia/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Modelos Teóricos
2.
J Chromatogr A ; 1729: 465012, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38852264

RESUMO

Acrylamide and N, N-methylene bis acrylamide are most commonly used monomer and crosslinker compounds employed in synthesis of super absorbent hydrogels. When applied as soil conditioners, there are apprehensions that these hydrogels degrade over time and thus may release the toxic monomers in the soil. A method was thus developed using Liquid Chromatography tandem mass spectrometry (LC-MS/MS) for the trace level quantification of acrylamide (AD), acrylic acid (AA) and N,N-methylene-bis-acrylamide (MBA) in sandy loam soil amended by two test hydrogels the Pusa Hydrogel and SPG 1118 hydrogel prepared using AD and MBA. The MRM (multiple reaction monitoring) transitions were optimized for both the compounds. Soil samples were extracted using dispersive solid-phase extraction (dSPE) with a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique, employing acetonitrile. All analytes were quantified at trace levels within a five-minute run using UHPLC equipped with a C-18 column. Single laboratory validation of the developed method in soil matrix was conducted based on specificity, linearity, sensitivity, accuracy, precision, matrix effect and measurement of uncertainty. LC-MS/MS exhibited a linear response in the concentration range of 0.001 to 1 µg mL-1, with correlation coefficient >+0.99. Acceptable recovery (within 70-120 %) with repeatability (%RSD ≤20 %) was obtained at 0.01 to 1 µg g-1 fortification levels. LOQ (Limit of quantification) of the method for AD, AA and MBA in soil matrix were 0.05, 1 and 0.01 µg g-1, respectively. Both intra-laboratory repeatability and intermediate precision at LOQ suggested well acceptable precise (HorRat≈ 0.3) method for quantification. Matrix enhancement effect was observed in the order: AA>AD>MBA. The Expanded Uncertainty (EU) in soil matrix at LOQ was 21.64 %, 28 % and 19 % for AD, AA and MBA respectively. Groundnut and wheat grown with application of the hydrogels showed no detectable residues of monomers in soil samples (total n = 60) near the root zone at the time of crop harvesting.


Assuntos
Acrilamida , Acrilamidas , Acrilatos , Poluentes do Solo , Solo , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Acrilatos/análise , Acrilatos/química , Acrilamida/análise , Solo/química , Acrilamidas/química , Acrilamidas/análise , Poluentes do Solo/análise , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Limite de Detecção , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Hidrogéis/química , Espectrometria de Massa com Cromatografia Líquida
3.
Biomed Chromatogr ; 38(8): e5939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886169

RESUMO

The presence of undesired agrochemicals residues in soil and water poses risks to both human health and the environment. The behavior of pesticides in soil depends both on the physico-chemical properties of pesticides and soil type. This study examined the adsorption-desorption and leaching behavior of the maize herbicide tembotrione in soils of the upper (UGPZ), trans (TGPZ) and middle Gangetic plain zones of India. Soil samples were extracted using acetone followed by partitioning with dichloromethane, whereas liquid-liquid extraction using dichloromethane was used for aqueous samples. Residues of tembotrione and its metabolite TCMBA, {2-chloro-4-(methylsulfonyl)-3-[(2,2,2-trifluoroethoxy) methyl] benzoic acid}, were quantified using liquid chromatography-tandem mass spectrometry. The data revealed that tembotrione adsorption decreased with increasing pH and dissolved organic matter but increased with salinity. The maximum adsorption occurred at pH 4, 0.01 m sodium citrate and 4 g/L NaCl, with corresponding Freundlich constants of 1.83, 2.28 and 3.32, respectively. The hysteresis index <1 indicated faster adsorption than desorption. Leaching studies under different flow conditions revealed least mobility in UGPZ soil and high mobility in TGPZ soil, consistent with groundwater ubiquity scores of 4.27 and 4.81, respectively. Soil amendments decreased tembotrione mobility in the order: unamended > wheat straw ash > wheat straw > farm yard manure > compost. The transformation of tembotrione to TCMBA and its mobility in soil columns were also assessed.


Assuntos
Cicloexanonas , Poluentes do Solo , Índia , Poluentes do Solo/química , Poluentes do Solo/análise , Adsorção , Cicloexanonas/química , Cicloexanonas/análise , Solo/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Herbicidas/química , Herbicidas/análise , Modelos Lineares , Limite de Detecção , Reprodutibilidade dos Testes , Sulfonas
4.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925655

RESUMO

AIMS: In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well. METHODS AND RESULTS: Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger). The morphological changes to the fungal structure due to ZNP and SZNP treatment were studied by field emission-scanning electron microscopy. Nanoparticle mediated elevation of reactive oxygen species (ROS) in fungal samples was detected by analyzing the levels of superoxide dismutase, catalase, thiol content, lipid peroxidation, and by 2,7-dichlorofluorescin diacetate assay. The phytotoxicity of these two nanostructures was assessed in rice plants by measuring primary plant growth parameters. Further, the translocation of the nanocomposite in the same plant model system was examined by checking the presence of fluorescein isothiocyanate tagged SZNP within the plant tissue. CONCLUSIONS: ZNP had superior antifungal efficacy than SZNP and caused the generation of more ROS in the fungal samples. Even then, SZNP was preferred as an agrochemical delivery vehicle because, unlike ZNP alone, it was not toxic to plant system. Moreover, as silica in nanoform is entomotoxic in nature and nano ZnO has antifungal property, both the cargo (agrochemical) and the carrier system (silica coated porous nano zinc oxide) will have a synergistic effect in crop protection.


Assuntos
Antifúngicos , Nanocompostos , Dióxido de Silício , Óxido de Zinco , Óxido de Zinco/farmacologia , Nanocompostos/toxicidade , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Antifúngicos/farmacologia , Agroquímicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Porosidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Preparações de Ação Retardada , Espécies Reativas de Oxigênio/metabolismo
5.
J Environ Manage ; 361: 121202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805959

RESUMO

The inlet of wastewater treatment plants (WWTPs) contains pathogenic microorganisms which during aeration and by mechanical mixing through wind typically aerosolized microbes into ambient air. Bioaerosol emission and its characterization (bacterial and fungal) was investigated considering low-flow and high-flow inlet of wastewater treatment plant. Generation of bioaerosols was found influenced by prevailing seasons while both during summer and winter, fungal concentration (winter: 1406 ± 517; summer: 1743 ± 271 CFU/m3) was higher compared to bacterial concentration (winter: 1077 ± 460; summer: 1415 ± 588 CFU/m3). Bioaerosols produced from WWTPs were predominately in the size range of 2.1-4.7 µm while fraction of fungal bioaerosols were also in ultra-fine range (0.65 µm). Bioaerosols reaching to the air from WWTPs varied seasonally and was calculated by aerosolization ratio. During summer, aerosolization of the bioaerosols was nearly 6 times higher than winter. To constitute potential health effects from the exposure to these bioaerosols, biological characterization, antibiotics resistance and the health survey of the nearby area were also performed. The biological characterization of the bioaerosols samples were done through metagenomic approach using 16s and ITS metagenomic sequencing. Presence of 167 genus of bacteria and 41 genus of fungi has been found. Out of this, bacillus (73%), curtobacterium (21%), pseudomonas, Exiguo bacterium, Acinetobacter bacillaceae, Enterobacteriaceae and Prevotella were the dominant genus (top 10) of bacteria. In case of fungi, xylariales (49%), Hypocreales (19%), Coperinopsis (9%), Alternaria (8%), Fusarium (6%), Biopolaris, Epicoccum, Pleosporaceae, Cladosporium and Nectriaceae were dominant. Antibiotics like, Azithromycin and cefixime were tested on the most dominant bacillus showed resistance on higher concentration of cefixime and lower concentration of azithromycin. Population-based health survey in WWTP nearby areas (50-150 m periphery) found several types of diseases/symptoms including respiratory problem, skin rash/irritation, change in smell and taste, eye irritation within the resident population and workers.


Assuntos
Aerossóis , Microbiologia do Ar , Águas Residuárias , Águas Residuárias/microbiologia , Aerossóis/análise , Bactérias , Fungos , Monitoramento Ambiental , Humanos
6.
Environ Int ; 184: 108461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340402

RESUMO

BACKGROUND: Heatwaves are expected to increase with climate change, posing a significant threat to population health. In India, with the world's largest population, heatwaves occur annually but have not been comprehensively studied. Accordingly, we evaluated the association between heatwaves and all-cause mortality and quantifying the attributable mortality fraction in India. METHODS: We obtained all-cause mortality counts for ten cities in India (2008-2019) and estimated daily mean temperatures from satellite data. Our main extreme heatwave was defined as two-consecutive days with an intensity above the 97th annual percentile. We estimated city-specific heatwave associations through generalised additive Poisson regression models, and meta-analysed the associations. We reported effects as the percentage change in daily mortality, with 95% confidence intervals (CI), comparing heatwave vs non-heatwave days. We further evaluated heatwaves using different percentiles (95th, 97th, 99th) for one, two, three and five-consecutive days. We also evaluated the influence of heatwave duration, intensity and timing in the summer season on heatwave mortality, and estimated the number of heatwave-related deaths. FINDINGS: Among âˆ¼ 3.6 million deaths, we observed that temperatures above 97th percentile for 2-consecutive days was associated with a 14.7 % (95 %CI, 10.3; 19.3) increase in daily mortality. Alternative heatwave definitions with higher percentiles and longer duration resulted in stronger relative risks. Furthermore, we observed stronger associations between heatwaves and mortality with higher heatwave intensity. We estimated that around 1116 deaths annually (95 %CI, 861; 1361) were attributed to heatwaves. Shorter and less intense definitions of heatwaves resulted in a higher estimated burden of heatwave-related deaths. CONCLUSIONS: We found strong evidence of heatwave impacts on daily mortality. Longer and more intense heatwaves were linked to an increased mortality risk, however, resulted in a lower burden of heatwave-related deaths. Both definitions and the burden associated with each heatwave definition should be incorporated into planning and decision-making processes for policymakers.


Assuntos
Temperatura Alta , Mortalidade , Cidades , Risco , Temperatura , Índia/epidemiologia
7.
Front Chem ; 11: 1283895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075498

RESUMO

A robust method was developed using LC-ESI-MS/MS-based identification and quantification of 103 fortified pesticides in a mango fruit drink. Variations in QuEChERS extraction (without buffer, citrate, and/or acetate buffered) coupled with dispersive clean-up combinations were evaluated. Results showed 5 mL dilution and citrate buffered QuEChERS extraction with anhydrous (anhy) MgSO4 clean-up gave acceptable recovery for 100 pesticides @ 1 µg mL-1 fortification. The method was validated as per SANTE guidelines (SANTE/11813/2021). 95, 91, and 77 pesticides were satisfactorily recovered at 0.1, 0.05, and 0.01 µg mL-1 fortification with HorRat values ranging from 0.2-0.8 for the majority. The method showed matrix enhancement for 77 pesticides with a global uncertainty of 4.72%-23.89%. The reliability of the method was confirmed by real sample analysis of different brands of mango drinks available in the market. The greenness assessment by GAPI (Green Analytical Procedure Index) indicated the method was much greener than other contemporary methods.

8.
J Environ Sci Health B ; 58(11): 679-688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37807607

RESUMO

The application of biocontrol agents in farm operations for pest control programs is gaining priority and preference globally. Effective delivery, infectivity of the biocontrol agents, and quality shelf-life products containing these bioagents are vital parameters responsible for the success of biopesticides under field conditions. In the present study, moisture-retaining bio-insecticidal dustable powder formulation (SaP) of Steinernema abbasi (Sa) infective juveniles (IJs) was developed and assessed for its shelf life, physicochemical profile, and bio-efficacy against subterranean termite under field conditions. Formulation exhibited free-flowing character, with pH of 6.50-7.50, and apparent density in the range 0.50-0.70 g cm-3. The bioefficacy study for two rabi seasons (2020-2021, and 2021-2022) in wheat and chickpea grown in an experimental farm heavily infested with subterranean termites (Odontotermes obesus) revealed a significant reduction in plant damage due to pest attack in formulation-treated plots, monitored in terms of relative number of infested tillers in wheat and infested plants in chickpea fields. The reduced damage to the crop caused by termite was reflected in the relative differences in the growth and yield attributes as well. The study establishes the potential of the developed product as a biopesticide suitable for organic farming and integrated pest management operations.


Assuntos
Cicer , Isópteros , Animais , Triticum , Pós , Controle Biológico de Vetores , Agentes de Controle Biológico
9.
Bull Environ Contam Toxicol ; 111(4): 50, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752243

RESUMO

White rot fungi possess an enzymatic system that is non-specific to any pesticide and can be used for pesticide detoxification in biobeds. The present study evaluated potential of Phanerochaete chrysosporium to degrade co-applied atrazine and fipronil in ash or biochar biomixtures. Five biomixtures were prepared by partially replacing compost in rice straw-compost biomixture (BM) with 10% rice husk ash (RHA), 10% sugarcane bagasse ash (SBA), and 1 and 5% wheat straw biochar (WBC). Results suggested that after 30 days P. chrysosporium augmented biobeds resulted in 60.52-72.72% atrazine and 69.57-72.52% fipronil degradation. Hydroxyatrazine and fipronil sulfone were detected as the only metabolite of atrazine and fipronil, respectively, and were further degraded. Although, SBA significantly enhanced atrazine degradation, RHA or SBA had no significant effect on fipronil degradation. WBC (5%) slowed down degradation of both pesticides.


Assuntos
Atrazina , Oryza , Praguicidas , Phanerochaete , Saccharum , Celulose , Grão Comestível , Triticum
10.
Chemosphere ; 340: 139943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625487

RESUMO

Abundance of fine particulate-bound 16 priority polycyclic aromatic hydrocarbons (PAHs) was investigated to ascertain its sources and potential carcinogenic health risks in Varanasi, India. The city represents a typical urban settlement of South Asia having particulate exposure manyfold higher than standard with reports of pollution induced mortalities and morbidities. Fine particulates (PM2.5) were monitored from October 2019 to May 2020, with 32% of monitoring days accounting ≥100 µgm-3 of PM2.5 concentration, frequently from November to January (99% of monitoring days). The concentration of 16 priority PAHs varied from 24.1 to 44.6 ngm-3 (mean: 33.1 ± 3.2 ngm-3) without much seasonal deviations. Both low (LMW, 56%) and high molecular weight (HMW, 44%) PAHs were abundant, with Fluoranthene (3.9 ± 0.4ngm-3) and Fluorene (3.5 ± 0.3ngm-3) emerged as most dominating PAHs. Concentration of Benzo(a)pyrene (B(a)P, 0.5 ± 0.1ngm-3) was lower than the national standard as it contributed 13% of total PAHs mass. Diagnostic ratios of PAH isomers indicate predominance of pyrogenic sources including emissions from biomass burning, and both from diesel and petrol-driven vehicles. Source apportionment using receptor model revealed similar observation of major PAHs contribution from biomass burning and fuel combustion (54% of source contribution) followed by coal combustion for residential heating and cooking purposes (44%). Potential toxicity of B[a]P equivalence ranged from 0.003 to 1.365 with cumulative toxicity of 2.13ngm-3. Among the PAH species, dibenzo[h]anthracene contributed maximum toxicity followed by B[a]P, together accounting 86% of PAH induced carcinogenicity. Incremental risk of developing cancer through lifetime exposure (ILCR) of PAHs was higher in children (3.3 × 10-4) with 56% contribution from LMW PAHs, primarily through ingestion and dermal contact. Adults in contrast, were more exposed to inhale airborne PAHs with cumulative ILCR of 2.2 × 10-4. However, ILCR to PM2.5 exposure is probably underestimated considering unaccounted metal abundance thus, require source-specific control measures.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Ásia Meridional , Benzo(a)pireno , Carvão Mineral , Poeira
11.
Environ Monit Assess ; 195(9): 1067, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598129

RESUMO

Monitoring pesticide residue levels becomes crucial to maintain quality and guarantee food safety as the consumption of onion green leaves and immature and mature bulbs (either raw or processed) rises. A field experiment was conducted for two consecutive seasons with quizalofop-p-ethyl (5% EC) at 50 and 100 g a.i. ha-1 to evaluate weed control efficiency and to determine terminal residues. Post-emergence application of fop herbicide at 100 g a.i. ha-1 kept the weed density and dry weight reasonably at a lower level and enhanced the productivity of onion with higher economic returns. A rapid, sensitive, and analytical method was developed using high-performance liquid chromatography (HPLC) with excellent linearity (r2 > 0.99). The limit of quantification for quizalofop-p-ethyl was established at 0.04 mg kg-1 with signal to noise (S/N) ratio ≥ 10. The method was successfully applied and initial quantified residues were in the range of 2.5-4.4 mg kg-1 irrespective of seasons and doses. Finally, the presence of targeted herbicide residues in harvested samples was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS) under optimized operating conditions. Dietary risk assessment assured harvested onions were safe for consumption at the recommended dose. It also can be concluded that quizalofop ethyl did not adversely influence soil micro-organisms at standard rates of application.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Cebolas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Inocuidade dos Alimentos
12.
Environ Pollut ; 331(Pt 2): 121913, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247770

RESUMO

Retrieval accuracy and stability of two operational aerosol retrieval algorithms, Deep Blue (DB) and Dark Target (DT), applied on Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi National Polar-orbiting Partnership (S-NPP) satellite were evaluated over South Asia. The region is reported to be highly challenging to accurate estimation of satellite-based aerosol optical properties due to variations in surface reflectance, complex aerosol system and regional meteorology. Performance of both algorithms were initially evaluated by comparing their ability to retrieve aerosol signal over the complex geographical region under specific air pollution emission scenario. Thereafter, retrieval accuracy was investigated against 10 AERONET sites across South Asia, selected based on their geography and predominance aerosol types, from year 2012-2021. Geo-spatial analysis indicates DB to efficiently retrieve fine aerosol features over bright arid surfaces, and for smoke/dust dominating events whereas DT was better to identify small fire events under dark vegetated surface. Both algorithms however, indicate unsatisfactory retrieval accuracy against AERONET having 56-59% of valid retrievals with high RMSE (0.30-0.33) and bias. Overall, DB slightly underpredicted AOD with -0.02 mean bias (MB) whereas DT overpredicted AOD (MB: 0.13), with seasonality in their retrieval efficiency against AERONET. Time-series analysis indicates stability in retrieving AOD and match-up number for both algorithms. Retrieval bias of DB and DT AOD against AERONET AOD under diverse aerosol loading, aerosol size, scattering/absorbing aerosol, and surface vegetation coverage scenarios revealed DT to be more influenced by these conditions. Error analysis indicates at low AOD (≤0.2), accuracy of both DB and DT were subject to underlying vegetation coverage. At AOD>0.2, DB performed well in retrieving coarse aerosols whereas DT was superior when fine aerosols dominated. Overall, accuracy of both VIIRS algorithms require further refinement to continue MODIS AOD legacy over South Asia.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Ásia Meridional , Incerteza , Aerossóis/análise , Monitoramento Ambiental/métodos
13.
Environ Pollut ; 320: 121119, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681376

RESUMO

Fine airborne particles (diameter <2.5 µm; PM2.5) are recognized as a major threat to human health due to their physicochemical properties: composition, size, shape, etc. However, normally only size-fraction-specific particle concentrations are monitored. Interestingly, although the aerosol type is reported as part of the aerosol optical depth retrieval from satellite observations, it has not been utilized, to date, as an auxiliary information/co-variate for PM2.5 prediction. We developed Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) models that account for this information when predicting surface PM2.5. The models take as input only widely available data: satellite aerosol products with full cover and surface meteorological data. Distinct models were developed for AOD of specific aerosol types. Both the RF and XGBoost models performed well, showing moderate-to-high cross-validated adjusted R2 (RF: 0.753-0.909; XGBoost: 0.741-0.903), depending on the aerosol type and other covariates. The weighted performance of the specific aerosol-type models was higher than of the RF and XGBoost baseline models, where all the AOD retrievals were used together (the common practice). Our approach can provide improved risk estimates due to exposure to PM2.5, better resolved radiative forcing calculations, and tailored abatement surveillance of specific pollutants/sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , Monitoramento Ambiental , Aerossóis/análise
14.
Front Nutr ; 9: 994813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438723

RESUMO

Scavenging ethylene is a useful intervention during the transportation and storage of tropical climacteric fruits like sapota. Sapota (Manilkara achras Mill.) is a delicious tropical fruit with a very high respiration rate and poor shelf life. To prolong its post-harvest shelf life, the use of palladium chloride in electrospun nanomats was evaluated at a concentration varying from 1 to 4% levels. Encapsulation of 1-2% PdCl2 in nanomats increased the ethylene scavenging capacity (ESC) by 47-68%. Although, upon encapsulation, both PdCl2 and potassium permanganate showed significantly the same ethylene scavenging activity, the efficacy of PdCl2 was found better in presence of sapota fruits. The PdCl2 nanomats were brighter (L* > 73) in colour compared to the potassium permanganate mat. The placement of nanomats (2 cm2 × 9 cm2) in corrugated fibre board boxes in which the sapota was packed showed higher quality indices (firmness, TSS, ascorbic acid, and phenolics) along with lower PLW and respiration rate during the 8 days of storage period. Compared to control (8.35%), physiological loss in weight of 4.47% was recorded in fruits stored with ethylene scavenging nanomats. PdCl2 encapsulated PVA nanomats can emerge as a promising option for the retention of quality in fruits during storage and transit.

15.
Sci Rep ; 12(1): 11955, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831395

RESUMO

Environmental crises, declining factor productivity, and shrinking natural resource is a threat to global agricultural sustainability. The task is much more daunting in the Indo-Gangetic northern plains of India, where depletion of the underground water table and erratic rains due to the changing climate pose a major challenge to agriculture. To address these challenges a field investigation was carried out during 2016-2018 to test the efficacy of biopolymeric superabsorbent hydrogels namely Pusa Hydrogel (P-hydrogel: a semi-synthetic cellulose derivative-based product) and kaolin derivative of Pusa Hydrogel (K-hydrogel: semi-synthetic cellulose derivative) to assess their effect on crop and water productivity, soil moisture, root dynamics, and economics of soybean (Glycine max L.)-wheat (Triticum aestivum L.) system under three irrigation regimes namely full irrigation, limited irrigation and rainfed. The results revealed that the full irrigation along with P-hydrogel led to enhanced grain yield, biomass yield, and water productivity (WP) of soybean (1.61-10.5%, 2.2-9.5%, and 2.15-21.8%, respectively) and wheat (11.1-18.3%, 12-54% and 11.1-13.1%, respectively) over control plots. Likewise, under water stressed plots of rainfed conditions with P-hydrogel exhibited 52.7 and 20.6% higher system yields (in terms of wheat equivalent yield) over control and other combinations during the respective study years. Whereas the magnitude of increase in system yield under limited irrigation with P-hydrogel was ~ 15.1% and under full irrigation with P-hydrogel was 8.0-19.4%. Plots treated with P-hydrogel retained 3.0-5.0% higher soil moisture compared to no-hydrogel plots, while K-hydrogel treated plots held the lower moisture (4.0-6.0%) than the control. In terms of profitability, full irrigation along with P-hydrogel plots registered 12.97% higher economic returns over control. The results suggested that P-hydrogel (2.5 kg ha-1) reduces runoff water loss in full irrigation applied plots and retained more water, where loss of water is more thus reduces number of irrigations. Hence P-hydrogel with irrigation water is a viable option for sustainable production of soybean-wheat systems in the Indo-Gangetic plains of India and other similar eco-regions of the world.


Assuntos
Glycine max , Triticum , Agricultura/métodos , Celulose , Hidrogéis , Índia , Solo , Água
16.
Environ Pollut ; 309: 119776, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841987

RESUMO

This study examines vertically resolved aerosol optical properties retrieved from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO satellite over several cities across South Asia from March 2010 to February 2021. Atmospheric layer-specific stratification of aerosols and dominant aerosol sub-types was recognized over each city with their seasonal trends. A contrasting pattern in aerosol vertical distribution over cities across Indo-Gangetic Plain (IGP) was noted compared to non-IGP cities, with considerable dependency on geographic location of the city itself. In all the cases, total extinction decreased with increasing altitude however, with varying degree of slope. A clear intrusion of transported aerosols at higher altitude (>3 km) was also evident. Extinction coefficient of type-separated aerosols indicate robust contribution of smoke aerosols, urban aerosols/polluted dust, and mineral dust below 3 km height. At higher altitude (>3 km), dust and urban aerosols dominate over majority of the stations. Overall, 51% of total columnar aerosols remained within 0-1 km height over South Asian cities, slightly high over the IGP (57%) against non-IGP cities (39%). Such distribution also has a seasonal pattern with higher fraction of aerosols remaining below 1 km during post-monsoon (October-November, 62%) and winter (December-February, 72%) compared to summer months (March-May, 39%). When partitioned against planetary boundary layer (PBL), 41% (59%) of aerosols remained within the PBL (free troposphere) that too exhibiting strong diurnal variations irrespective of seasons. Dominating aerosol types and their contribution to total aerosol loading was explored by comparing type-based aerosol extinction against total aerosol extinction. Dust, smoke and urban aerosols emerged as three predominating aerosol types, while presence of marine aerosol was noted over the coastal cities. Major fraction of smoke and urban aerosols remained within 2 km height from surface. In contrast, efficient transport of dust aerosol above 2 km height was evident particularly over IGP during summer.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Cidades , Poeira/análise , Monitoramento Ambiental , Estações do Ano , Fumaça
17.
Environ Sci Pollut Res Int ; 29(54): 82006-82013, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35739446

RESUMO

Microplastics (MPs) are ubiquitous in our environment. Its presence in air, water, and soil makes it a serious threat to living organisms and has become a critical challenge across ecosystems. Present study aimed to assess the abundance of MPs in aerosols and street dust in Varanasi, a typical urban city in Northern India. Airborne particulates and street dust samples were collected from various sampling sites around Varanasi City. The physical identification of MPs was conducted by binocular microscopy, fluorescence microscopy, and scanning electron microscopy (SEM), while elemental analysis was made by energy-dispersive X-ray (EDX). Finally, Fourier-transform infrared spectroscopy (FTIR) was used for chemical characterization of MPs. Presence of MPs in both aerosols and street dust from all selected sampling sites was confirmed, however with varying magnitude. MPs of different colors having the shape of fragments, films, spherules, and fibers were recorded in the study while fragments (42%) in street dust and fibers (44%) dominated in aerosols. Majority of the MPs were < 1 mm in size and were primarily polypropylene, polystyrene, polyethylene, polyethylene terephthalate, polyester, and polyvinyl chloride types. The EDX spectra showed the presence of toxic inorganic contaminants like metallic elements on MPs, especially elements like aluminum, cadmium, magnesium, sodium, and silicon found to adsorb on the MPs. Presence of MPs in the airborne particulates and street dust in Varanasi is reported for the first time, thus initiating further research and call for a source-specific management plan to reduce its impact on human health and environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Poeira/análise , Plásticos/análise , Polipropilenos/análise , Ecossistema , Polietilenotereftalatos , Poliestirenos/análise , Alumínio/análise , Cádmio/análise , Cloreto de Polivinila , Magnésio/análise , Silício/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Carvão Mineral/análise , Solo , Polietilenos , Água/análise , Sódio/análise , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 842: 156834, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750188

RESUMO

Three-dimensional (temporal-spatial-vertical) climatology of South Asian summertime (MAMJ, 2010-2019) aerosols and aerosol sub-types was explored using multiple high-resolution satellite-based observations and reanalysis dataset. Vertical stratification of aerosol layer and aerosol sub-types was identified using observation from space-borne lidar. Aerosol optical depth (AOD) was particularly high across the Indo-Gangetic Plain (IGP; AOD ± SD: 0.56 ± 0.12) and over eastern coast of India (AOD: 0.6-0.8), with prevalence of heterogeneous aerosol sub-types having strong spatial gradient. Clearly, aerosols over north-western arid part were highly absorbing (Ultra-violet Aerosol Index, UVAI > 0.80) and coarse (Ångström exponent, AE < 0.8), with an indication of desert/-mineral dust aerosols. In contrast, fine and moderate to non-absorbing aerosols (UVAI: 0.20-0.50) dominate from central to lower IGP, including in Bangladesh, with signature of anthropogenic emissions. Prevailing aerosols over twelve South Asian cities were classified into six aerosol sub-types constraining their particle size and UV-absorbing potential. Overall, mineral dust, smoke and urban aerosols were the three major aerosol sub-types that prevail across South Asia during summer. In particular, 58-70 % of retrieval days over Karachi and Multan were dust dominated; 57-64 % days were dust or urban aerosols dominated over Lahore, Delhi, Kanpur and Varanasi, and 56-77 % days were smoke or urban aerosols dominated over Dhaka, Kathmandu, Chennai, Mumbai, Colombo and Nagpur. Prevailing aerosols were vertically stratified as 50-70 % of total AOD was retrieved <2 km from the surface except in few cities where 70-80 % of AOD was retrieved <3 km height. Mineral dust and/or urban aerosols emerged as the most abundant aerosol types near the surface (<1 km) in all the cities except in Chennai, with their abundance remained as a function of emission sources and geographical location.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Bangladesh , Poeira/análise , Monitoramento Ambiental/métodos , Índia , Fumaça
19.
J Environ Sci Health B ; 57(3): 233-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35263242

RESUMO

Effect of biotic and abiotic factors of soil on persistence and transformation of flucetosulfuron was studied in three soils from paddy growing zones of India. Herbicide residues in three soils dissipated with half-life ranging from 1.41 to 8.38 and 0.58 to 1.14 days under sterile and non-sterile conditions, respectively. Acidic pH and soil microbial activity contributed more toward the degradation of flucetosulfuron in soil. Under flooded soils, dissipation was bit slower than under field capacity moisture level. Five transformation products were identified with LC-MS/MS analysis. Ester hydrolysis and sulfonyl urea bridge cleavage seems to be the major transformation pathways for flucetosulfuron in soil.


Assuntos
Herbicidas , Poluentes do Solo , Cromatografia Líquida , Meia-Vida , Herbicidas/química , Solo/química , Poluentes do Solo/análise , Compostos de Sulfonilureia , Espectrometria de Massas em Tandem
20.
Environ Sci Pollut Res Int ; 29(53): 80005-80020, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35220535

RESUMO

Based on our previous study in minimal medium, Kocuria rosea and Aspergillus sydowii were identified as the best microbes for degradation of mixture of polyaromatic hydrocarbons (PAHs). The present study reports PAH degradation potential of these microbes in free and immobilized form. PAHs were extracted using QuEChERS-mediated process followed by quantification by high performance liquid chromatography. The microbial consortium of Kocuria rosea + Aspergillus sydowii was formulated in three bio-formulations, namely (i) bentonite-alginate composite beads; (ii) water dispersible granule composite using guar gum-nanobentonite; and (iii) composites of carboxymethyl cellulose-bentonite and were applied in PAH fortified (100 µg g-1) sandy loam soil. Results suggested that degradation data fitted well to first order kinetics as in most of the cases, the values of correlation coefficient (r) were > 0.95. The half-life (t1/2) values for PAHs in the uninoculated control soil were: naphthalene (10.43 d), fluorene (22.43 d), phenanthrene (24.64 d), anthracene (38.47 d), and pyrene (34.34 d). Inoculation of soil with free culture microbial consortium (without or with nutrient) and bio-formulation of degrading cultures enhanced degradation of all PAHs and half-life values were significantly reduced for each PAH: naphthalene (1.76-2.00 d), fluorene (2.52-6.65 d), phenanthrene (4.61-6.37 d), anthracene (9.01-12.22 d), and pyrene (10.98-15.55 d). Among different bio-formulations, guar gum-nanobentonite-based composite exhibited better efficacy for degradation of naphthalene, fluorene, phenanthrene, anthracene, and pyrene. The addition of microbial consortium in PAH fortified soil increased 16S rRNA gene copies of Alphaproteobacteria and Bacteroidetes, compared to the uninoculated, PAH-fortified control. The microbial functional gene assays showed that the gene copies of amoA, nirK, nirS, and anammox increased, suggesting nitrogen regulation in the PAH-fortified soil.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Microbiologia do Solo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Areia , Bentonita , Carboximetilcelulose Sódica , Pirenos , Naftalenos , Fluorenos , Antracenos , Nitrogênio , Água , Alginatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...