Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2874, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513918

RESUMO

Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 µm × 16 µm, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained.

2.
ACS Appl Mater Interfaces ; 11(49): 45949-45958, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738047

RESUMO

Aromatic soluble polyimides (PIs) have been widely used in organic field-effect transistors (OFETs) as gate dielectric layers due to their promising features such as outstanding chemical resistance, thermal stability, low-temperature processability, and mechanical flexibility. However, the molecular structures of soluble PIs on the electrical characteristics of OFETs are not yet fully understood. In this work, the material, dielectric, and electrical properties are evaluated to systematically investigate the chemical structure effect of aromatic dianhydride and diamine monomers on the device performance. Four soluble PIs based on 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 5-(2,5-Dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, in which the monomeric precursors contain different backbones, side groups, and linkages, were employed to compare the chemical structure impact. The dielectric properties, which significantly affect the charge transport and crystallinity of OSC thin films, clearly depended on the soluble PI types as well as the surface energy and the thermal stability. Furthermore, the electrical characteristic measurement and parameter extraction of OFETs based on TIPS-pentacene revealed that the 6FDA-based soluble PIs, which lead to high field-effect mobility, near-zero threshold electric field, and outstanding electrical stability under bias stress, are the most promising gate dielectric candidates. Finally, low-temperature solution-processed OFETs are successfully integrated with ultrathin flexible substrates, and they exhibit no significant electrical performance loss after mechanical flexibility tests. This work presents a step forward in the development of soluble PI gate dielectrics for flexible electronic devices with high device performance.

3.
J Chem Phys ; 151(14): 144306, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615248

RESUMO

Ligand substitution reactions are common in solvated transition metal complexes, and harnessing them through initiation with light promises interesting practical applications, driving interest in new means of probing their mechanisms. Using a combination of time-resolved x-ray absorption spectroscopy and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations and x-ray absorption near-edge spectroscopy calculations, we elucidate the mechanism of photoaquation in the model system iron(ii) hexacyanide, where UV excitation results in the exchange of a CN- ligand with a water molecule from the solvent. We take advantage of the high flux and stability of synchrotron x-rays to capture high precision x-ray absorption spectra that allow us to overcome the usual limitation of the relatively long x-ray pulses and extract the spectrum of the short-lived intermediate pentacoordinated species. Additionally, we determine its lifetime to be 19 (±5) ps. The QM/MM simulations support our experimental findings and explain the ∼20 ps time scale for aquation as involving interconversion between the square pyramidal (SP) and trigonal bipyramidal pentacoordinated geometries, with aquation being only active in the SP configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...