Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
JAMA Netw Open ; 5(3): e220632, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258579

RESUMO

Importance: Osteoarthritis (OA) is a major cause of disability in the US, with no approved treatments to slow progression, but animal models suggest that pulsed low-intensity ultrasonography (PLIUS) may promote cartilage growth. Objective: To evaluate the efficacy of PLIUS in providing symptom reduction and decreased loss of tibiofemoral cartilage thickness in patients with knee OA. Design, Setting, and Participants: A phase 2A, sham-controlled, parallel, double-blind randomized clinical trial was conducted at 2 Veterans Affairs hospitals in Salt Lake City, Utah, and San Diego, California, from May 22, 2015, to January 31, 2019. Data were analyzed from June 27, 2020, to October 20, 2020. Participants recruited through the US Department of Veterans Affairs (N = 132) with clinical and radiographic evidence of early knee OA were randomly assigned to receive PLIUS or a sham device, self-administered for 20 minutes daily over the medial compartment of the knee. All enrollees participated in a 4-week prerandomization sham run-in period, followed by a 48-week treatment period. Randomization was stratified by study site and Kellgren-Lawrence grades 1 (n = 15), 2 (n = 51), and 3 (n = 66). Intervention: Participants either received 48 weeks of PLIUS or sham ultrasonography. Main Outcomes and Measures: The trial incorporated 2 coprimary outcomes: symptomatic improvement assessed by Outcome Measures in Rheumatology Clinical Trials-Osteoarthritis Research Society International Responder Criteria (ie, met if either >50% improvement in pain and function with at least a 20% absolute improvement of at least 2 of the following 3 factors: improvement by at least 20% [pain, function, and patient global assessment] with at least a 10-mm absolute improvement), and cartilage preservation assessed as change in central medial femoral condyle cartilage thickness by magnetic resonance imaging. Intention-to-treat analysis was used. Results: The mean (SD) participant age was 63.6 (10.7) years and 119 were men (90.2%). The mean (SD) duration of OA symptoms was 13.4 (12.3) years. In the PLIUS group, 70.4% (95% CI, 58.2%-82.6%) of the participants experienced symptomatic improvement, compared with 67.3% (95% CI, 54.9%-79.7%) of participants in the sham group (P = .84); there was no statistically significant difference in response rates between the treatment groups, and the between-group rate difference of 3.1% (95% CI, -14.3% to 20.5%) did not meet the predefined 10% threshold for clinically significant symptomatic improvement from application of PLIUS. At 48 weeks of treatment, central medial femoral condyle cartilage thickness decreased by a mean (SD) of 73.8 (168.1) µm in the PLIUS group and by 42.2 (297.0) µm in the sham group. This 48-week mean change between the 2 groups did not reach statistical significance (P = .44), and the between-group 48-week difference of -31.7 µm (95% CI, -129.0 µm to 65.7 µm) did not meet the predefined threshold. There were 99 nonserious adverse events in the PLIUS group and 89 in the sham group during the trial. No serious adverse events were deemed related to the study device. Conclusions and Relevance: PLIUS, as implemented in this study, demonstrated neither symptomatic benefit nor a decrease in loss of tibiofemoral cartilage thickness in knee OA. Trial Registration: ClinicalTrials.gov Identifier: NCT02034409.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Veteranos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Método Duplo-Cego , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/terapia , Dor/etiologia , Ultrassonografia , Estados Unidos
2.
Front Neurosci ; 15: 727311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621152

RESUMO

Background: Peripheral neuropathy can be caused by diabetes mellitus and HIV infection, and often leaves patients with treatment-resistant neuropathic pain. To better treat this condition, we need greater understanding of the pathogenesis, as well as objective biomarkers to predict treatment response. Magnetic resonance imaging (MRI) has a firm place as a biomarker for diseases of the central nervous system (CNS), but until recently has had little role for disease of the peripheral nervous system. Objectives: To review the current state-of-the-art of peripheral nerve MRI in diabetic and HIV symmetrical polyneuropathy. We used systematic literature search methods to identify all studies currently published, using this as a basis for a narrative review to discuss major findings in the literature. We also assessed risk of bias, as well as technical aspects of MRI and statistical analysis. Methods: Protocol was pre-registered on NIHR PROSPERO database. MEDLINE, Web of Science and EMBASE databases were searched from 1946 to 15th August 2020 for all studies investigating either diabetic or HIV neuropathy and MRI, focusing exclusively on studies investigating symmetrical polyneuropathy. The NIH quality assessment tool for observational and cross-sectional cohort studies was used for risk of bias assessment. Results: The search resulted in 18 papers eligible for review, 18 for diabetic neuropathy and 0 for HIV neuropathy. Risk of bias assessment demonstrated that studies generally lacked explicit sample size justifications, and some may be underpowered. Whilst most studies made efforts to balance groups for confounding variables (age, gender, BMI, disease duration), there was lack of consistency between studies. Overall, the literature provides convincing evidence that DPN is associated with larger nerve cross sectional area, T2-weighted hyperintense and hypointense lesions, evidence of nerve oedema on Dixon imaging, decreased fractional anisotropy and increased apparent diffusion coefficient compared with controls. Analysis to date is largely restricted to the sciatic nerve or its branches. Conclusions: There is emerging evidence that various structural MR metrics may be useful as biomarkers in diabetic polyneuropathy, and areas for future direction are discussed. Expanding this technique to other forms of peripheral neuropathy, including HIV neuropathy, would be of value. Systematic Review Registration: (identifier: CRD 42020167322) https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=167322.

3.
Cartilage ; 12(4): 418-430, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971110

RESUMO

OBJECTIVE: Our aim was to compare T2 with delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in the hip and assess the reproducibility and effect of joint unloading on T2 mapping. DESIGN: Ten individuals at high risk of developing hip osteoarthritis (SibKids) underwent contemporaneous T2 mapping and dGEMRIC in the hip (10 hips). Twelve healthy volunteers underwent T2 mapping of both hips (24 hips) at time points 25, 35, 45, and 55 minutes post offloading. Acetabular and femoral cartilage was manually segmented into regions of interest. The relationship between T2 and dGEMRIC values from anatomically corresponding regions of interests was quantified using Pearson's correlation. The reproducibility of image analysis for T2 and dGEMRIC, and reproducibility of image acquisition for T2, was quantified using the intraclass correlation coefficient (ICC), root mean square coefficient of variance (RMSCoV), smallest detectable difference (SDD), and Bland-Altman plots. The paired t test was used to determine if difference existed in T2 values at different unloading times. RESULTS: T2 values correlated most strongly with dGEMRIC values in diseased cartilage (r = -0.61, P = <0.001). T2 image analysis (segmentation) reproducibility was ICC = 0.96 to 0.98, RMSCoV = 3.5% to 5.2%, and SDD = 2.2 to 3.5 ms. T2 values at 25 minutes unloading were not significantly different to longer unloading times (P = 0.132). SDD for T2 image acquisition reproducibility was 7.1 to 7.4 ms. CONCLUSIONS: T2 values in the hip correlate well with dGEMRIC in areas of cartilage damage. T2 shows high reproducibility and values do not change beyond 25 minutes of joint unloading.


Assuntos
Imageamento por Ressonância Magnética , Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Gadolínio , Gadolínio DTPA , Articulação do Quadril/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes
4.
Magn Reson Med ; 85(5): 2477-2489, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33201538

RESUMO

PURPOSE: To achieve rapid, low specific absorption rate (SAR) super-resolution imaging by exploiting the characteristic magnetization off-resonance profile in SSFP. THEORY AND METHODS: In the presented technique, low flip angle unbalanced SSFP imaging is used to acquire a series of images at a low nominal resolution that are then combined in a super-resolution strategy analogous to non-linear structured illumination microscopy. This is demonstrated in principle via Bloch simulations and synthetic phantoms, and the performance is quantified in terms of point-spread function (PSF) and SNR for gray and white matter from field strengths of 0.35T to 9.4T. A k-space reconstruction approach is proposed to account for B0 effects. This was applied to reconstruct super-resolution images from a test object at 9.4T. RESULTS: Artifact-free super-resolution images were produced after incorporating sufficient preparation time for the magnetization to approach the steady state. High-resolution images of a test object were obtained at 9.4T, in the presence of considerable B0 inhomogeneity. For gray matter, the highest achievable resolution ranges from 3% of the acquired voxel dimension at 0.35T, to 9% at 9.4T. For white matter, this corresponds to 3% and 10%, respectively. Compared to an equivalent segmented gradient echo acquisition at the optimal flip angle, with a fixed TR of 8 ms, gray matter has up to 34% of the SNR at 9.4T while using a ×10 smaller flip angle. For white matter, this corresponds to 29% with a ×11 smaller flip angle. CONCLUSION: This approach achieves high degrees of super-resolution enhancement with minimal RF power requirements.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
5.
J Acoust Soc Am ; 145(2): 989, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30823819

RESUMO

A method is presented for tracking the internal deformation of self-oscillating vocal fold models using magnetic resonance imaging (MRI). Silicone models scaled to four times life-size to lower the flow-induced vibration frequency were embedded with fiducial markers in a coronal plane. Candidate marker materials were tested using static specimens, and two materials, cupric sulfate and glass, were chosen for testing in the vibrating vocal fold models. The vibrating models were imaged using a gated MRI protocol wherein MRI acquisition was triggered using the subglottal pressure signal. Two-dimensional image slices at different phases during self-oscillation were captured, and in each phase the fiducial markers were clearly visible. The process was also demonstrated using a three-dimensional scan at two phases. The benefit of averaging to increase signal-to-noise ratio was explored. The results demonstrate the ability to use MRI to acquire quantitative deformation data that could be used, for example, to validate computational models of flow-induced vocal fold vibration and quantify deformation fields encountered by cells in bioreactor studies.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Prega Vocal/diagnóstico por imagem , Desenho de Equipamento , Marcadores Fiduciais , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Silicones , Vibração
6.
Invest Radiol ; 53(12): 705-713, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29979328

RESUMO

OBJECTIVES: The aim of this study was to describe the development of morphologic and diffusion tensor imaging sequences of peripheral nerves at 7 T, using carpal tunnel syndrome (CTS) as a model system of focal nerve injury. MATERIALS AND METHODS: Morphologic images were acquired at 7 T using a balanced steady-state free precession sequence. Diffusion tensor imaging was performed using single-shot echo-planar imaging and readout-segmented echo-planar imaging sequences. Different acquisition and postprocessing methods were compared to describe the optimal analysis pipeline. Magnetic resonance imaging parameters including cross-sectional areas, signal intensity, fractional anisotropy (FA), as well as mean, axial, and radial diffusivity were compared between patients with CTS (n = 8) and healthy controls (n = 6) using analyses of covariance corrected for age (significance set at P < 0.05). Pearson correlations with Bonferroni correction were used to determine association of magnetic resonance imaging parameters with clinical measures (significance set at P < 0.01). RESULTS: The 7 T acquisitions with high in-plane resolution (0.2 × 0.2mm) afforded detailed morphologic resolution of peripheral nerve fascicles. For diffusion tensor imaging, single-shot echo-planar imaging was more efficient than readout-segmented echo-planar imaging in terms of signal-to-noise ratio per unit scan time. Distortion artifacts were pronounced, but could be corrected during postprocessing. Registration of FA maps to the morphologic images was successful. The developed imaging and analysis pipeline identified lower median nerve FA (pisiform bone, 0.37 [SD 0.10]) and higher radial diffusivity (1.08 [0.20]) in patients with CTS compared with healthy controls (0.53 [0.06] and 0.78 [0.11], respectively, P < 0.047). Fractional anisotropy and radial diffusivity strongly correlated with patients' symptoms (r = -0.866 and 0.866, respectively, P = 0.005). CONCLUSIONS: Our data demonstrate the feasibility of morphologic and diffusion peripheral nerve imaging at 7 T. Fractional anisotropy and radial diffusivity were found to be correlates of symptom severity.


Assuntos
Síndrome do Túnel Carpal/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Nervos Periféricos/diagnóstico por imagem , Adulto , Artefatos , Imagem Ecoplanar/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Razão Sinal-Ruído
7.
Neuroimage ; 166: 400-424, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079522

RESUMO

UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI, carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR, susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first 10,000 imaged subjects has recently been released for general research access. To help convert this data into useful summary information we have developed an automated processing and QC (Quality Control) pipeline that is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative investigations carried out as part of the development of both the imaging protocol and the processing pipeline.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Controle de Qualidade , Bases de Dados Factuais/normas , Conjuntos de Dados como Assunto/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Aprendizado de Máquina/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Reino Unido
8.
Artigo em Inglês | MEDLINE | ID: mdl-29276628

RESUMO

In cardiac perfusion imaging, choice of flip angle is an important factor for steady state acquisition. This work focuses on presenting an analytical framework for understanding how non-ideal slice excitation profiles affect contrast in ungated 2D steady state cardiac perfusion studies, and to study a technique for estimating flip angle that maximizes enhanced/unenhanced myocardial contrast-to-noise ratio (CNR) in single slice and multi-slice acquisitions. A numerical simulation of ungated 2D golden ratio radial spoiled gradient echo (SPGR) was created that takes into consideration the actual (Bloch simulated) slice excitation profile. The effect of slice excitation profile on myocardial CNR as a function of flip angle was assessed in phantoms and in-vivo. For fast RF pulses, the flip angle that yields maximum CNR (considering the actual slice excitation profile) was considerably higher than expected, assuming an ideal excitation. The simulation framework presented accurately predicts the flip angle yielding maximum CNR when the actual slice excitation profile is taken into consideration. The prescribed flip angle for optimal contrast in ungated 2D steady-state SPGR cardiac perfusion studies can vary significantly from that calculated when an ideal slice excitation profile is assumed. Consideration of the actual slice excitation can yield a more optimal flip angle estimate in both the single slice and multi-slice cases.

9.
Nat Neurosci ; 19(11): 1523-1536, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27643430

RESUMO

Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank.


Assuntos
Bancos de Espécimes Biológicos , Encéfalo/citologia , Estudos Epidemiológicos , Neuroimagem , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Reino Unido
10.
Magn Reson Imaging ; 34(9): 1329-1336, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27502698

RESUMO

OBJECTIVE: Simultaneous multi-slice (SMS) imaging is a slice acceleration technique that acquires multiple slices in the same time as a single slice. Radial controlled aliasing in parallel imaging results in higher acceleration (radial CAIPIRINHA or CAIPI) is a promising SMS method with less severe slice aliasing artifacts as compared to its Cartesian counterpart. Here we use radial CAIPI with data undersampling and constrained reconstruction to improve the utility of ungated cardiac perfusion acquisitions. We test the proposed framework with a traditional saturation recovery fast low-angle shot (turboFLASH) sequence and also without saturation recovery as a steady-state spoiled gradient echo (SPGR) sequence on animal and human studies. METHODS: Simulations and phantom studies were performed for both the turboFLASH and the SPGR radial CAIPI methods. Ungated undersampled golden ratio radial CAIPI data with saturation recovery were acquired in 8 dogs and 2 human subjects. The CAIPI data without saturation pulses were acquired in 4 human subjects. For both methods, slice acceleration factors of two and three were used. A new spatio-temporal reconstruction using total variation and patch-based low rank constraints was used to jointly reconstruct the multi-slice multi-coil images. RESULTS: Phantom scans and computer simulations showed that ungated SPGR generally provides better contrast to noise ratio (CNR) than the saturation recovery sequence if the saturation recovery time is less than 100ms. Both of the ungated radial CAIPI methods demonstrated promising image quality in terms of preserving dynamics of the contrast agent and maintaining anatomical structures, even with three slices acquired simultaneously. CONCLUSION: Ungated simultaneous multi-slice acquisitions with either a saturation recovery turboFLASH sequence or a steady-state gradient echo SPGR sequence are feasible and provide increased slice coverage without loss of temporal resolution. Compared with a sensitivity encoding (SENSE) SMS reconstruction, the constrained reconstruction method provides better image quality for undersampled radial CAIPI data.


Assuntos
Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Coração/diagnóstico por imagem , Coração/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Simulação por Computador , Cães , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
11.
Quant Imaging Med Surg ; 6(6): 699-714, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28090447

RESUMO

Sodium magnetic resonance imaging (MRI), or imaging of the 23Na nucleus, has been under exploration for several decades, and holds promise for potentially revealing additional biochemical information about the health of tissues that cannot currently be obtained from conventional hydrogen (or proton) MRI. This additional information could serve as an important complement to conventional MRI for many applications. However, despite these exciting possibilities, sodium MRI is not yet used routinely in clinical practice, and will likely remain strictly in the domain of exploratory research for the coming decade. This paper begins with a technical overview of sodium MRI, including the nuclear magnetic resonance (NMR) signal characteristics of the sodium nucleus, the challenges associated with sodium MRI, and the specialized pulse sequences, hardware, and reconstruction techniques required. Various applications of sodium MRI for quantitative analysis of the musculoskeletal system are then reviewed, including the non-invasive assessment of cartilage degeneration in vivo, imaging of tendinopathy, applications in the assessment of various muscular pathologies, and assessment of muscle response to exercise.

12.
Quant Imaging Med Surg ; 6(6): 715-730, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28090448

RESUMO

Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.

13.
Concepts Magn Reson Part B Magn Reson Eng ; 46B(4): 191-201, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31452649

RESUMO

The purpose of this work was to synchronously acquire proton (1H) and sodium (23Na) image data on a 3T clinical MRI system within the same sequence, without internal modification of the clinical hardware, and to demonstrate synchronous acquisition with 1H/23Na-GRE imaging with Cartesian and radial k-space sampling. Synchronous dual-nuclear imaging was implemented by: mixing down the 1H signal so that both the 23Na and 1H signal were acquired at 23Na frequency by the conventional MRI system; interleaving 1H/23Na transmit pulses in both Cartesian and radial sequences; and using phase stabilization on the 1H signal to remove mixing effects. The synchronous 1H/23Na setup obtained images in half the time necessary to sequentially acquire the same 1H and 23Na images with the given setup and parameters. Dual-nuclear hardware and sequence modifications were used to acquire 23Na images within the same sequence as 1H images, without increases to the 1H acquisition time. This work demonstrates a viable technique to acquire 23Na image data without increasing 1H acquisition time using minor additional custom hardware, without requiring modification of a commercial scanner with multinuclear capability.

14.
NMR Biomed ; 29(2): 107-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26417667

RESUMO

The proliferation of high-field whole-body systems, advances in gradient performance and refinement of signal-to-noise ratio (SNR)-efficient short-TE sequences suitable for sodium imaging have led to a resurgence of interest in sodium imaging for body applications. With this renewed interest has come increased demand for SNR-efficient sodium coils. Efficient coils can significantly increase SNR in sodium imaging, allowing higher resolutions and/or shorter scan times. In this work, we focus on body imaging applications of sodium MRI, and review developments in MRI radiofrequency (RF) coil topologies for sodium imaging. We first provide a brief discussion of RF coil design considerations in sodium imaging. This is followed by an overview of common coil topologies, their advantages and disadvantages, and examples of each.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Sódio/metabolismo , Desenho de Equipamento , Humanos , Razão Sinal-Ruído
15.
J Neurosci Methods ; 261: 75-84, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709015

RESUMO

BACKGROUND: The gold standard for mapping nerve fiber orientation in white matter of the human brain is histological analysis through biopsy. Such mappings are a crucial step in validating non-invasive techniques for assessing nerve fiber orientation in the human brain by using diffusion MRI. However, the manual extraction of nerve fiber directions of histological slices is tedious, time consuming, and prone to human error. NEW METHOD: The presented semi-automated algorithm first creates a binary-segmented mask of the nerve fibers in the histological image, and then extracts an estimate of average directionality of nerve fibers through a Fourier-domain analysis of the masked image. It also generates an uncertainty level for its estimate of average directionality. RESULTS AND COMPARISON WITH EXISTING METHODS: The average orientations of the semi-automatic method were first compared to a qualitative expert opinion based on visual inspection of nerve fibers. A weighted RMS difference between the expert estimate and the algorithmically determined angle (weighted by expert's confidence in his estimate) was 15.4°, dropping to 9.9° when only cases with an expert confidence level of greater than 50% were included. The algorithmically determined angles were then compared with angles extracted using a manual segmentation technique, yielding an RMS difference of 11.2°. CONCLUSION: The presented semi-automated method is in good agreement with both qualitative and quantitative manual expert-based approaches for estimating directionality of nerve fibers in white matter from images of stained histological slices of the human brain.


Assuntos
Algoritmos , Técnicas Histológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas , Reconhecimento Automatizado de Padrão/métodos , Substância Branca/anatomia & histologia , Análise de Fourier , Hipocampo/anatomia & histologia , Humanos
16.
J Magn Reson Imaging ; 42(5): 1329-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851109

RESUMO

PURPOSE: To deploy and quantify the accuracy of 3D dual echo steady state (DESS) MR arthrography with hip traction to image acetabular cartilage. Clinical magnetic resonance imaging (MRI) sequences used to image hip cartilage often have reduced out-of-plane resolution and may lack adequate signal-to-noise to image cartilage. MATERIALS AND METHODS: Saline was injected into four cadaver hips placed under traction. 3D DESS MRI scans were obtained before and after cores of cartilage were harvested from the acetabulum; the two MRIs were spatially aligned to reference core positions. The thickness of cartilage cores was measured under microscopy to serve as the reference standard. 3D reconstructions of cartilage and subchondral bone were generated using automatic and semiautomatic image segmentation. Cartilage thickness estimated from the 3D reconstructions was compared to physical measurements using Bland-Altman plots. RESULTS: As revealed by the automatic segmentation mask, saline imbibed the joint space throughout the articulating surface, with the exception of the posteroinferior region in two hips. Locations where air bubbles were introduced and regions of suspected low density bone disrupted an otherwise smooth automatic segmentation mask. Automatic and semiautomatic segmentation yielded a bias ± repeatability coefficient (95% limits of agreement) of 0.10 ± 0.51 mm (-0.41 to 0.61 mm) and 0.06 ± 0.43 mm (-0.37 to 0.49 mm), respectively. CONCLUSION: Cartilage thickness can be estimated to within ∼0.5 mm of the physical value with 95% confidence using 3D reconstructions of 3D DESS MR arthrography images. Manual correction of the automatic segmentation mask may improve reconstruction accuracy.


Assuntos
Acetábulo/anatomia & histologia , Artrografia/métodos , Cartilagem Articular/anatomia & histologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Cadáver , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Razão Sinal-Ruído
17.
Magn Reson Med ; 74(4): 1070-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25285855

RESUMO

PURPOSE: Highly undersampled three-dimensional (3D) saturation-recovery sequences are affected by k-space trajectory since the magnetization does not reach steady state during the acquisition and the slab excitation profile yields different flip angles in different slices. This study compares centric and reverse-centric 3D cardiac perfusion imaging. METHODS: An undersampled (98 phase encodes) 3D ECG-gated saturation-recovery sequence that alternates centric and reverse-centric acquisitions each time frame was used to image phantoms and in vivo subjects. Flip angle variation across the slices was measured, and contrast with each trajectory was analyzed via Bloch simulation. RESULTS: Significant variations in flip angle were observed across slices, leading to larger signal variation across slices for the centric acquisition. In simulation, severe transient artifacts were observed when using the centric trajectory with higher flip angles, placing practical limits on the maximum flip angle used. The reverse-centric trajectory provided less contrast, but was more robust to flip angle variations. CONCLUSION: Both of the k-space trajectories can provide reasonable image quality. The centric trajectory can have higher CNR, but is more sensitive to flip angle variation. The reverse-centric trajectory is more robust to flip angle variation.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
18.
Magn Reson Med ; 71(6): 2231-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24105740

RESUMO

PURPOSE: The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3 T. The secondary objective was to create acceptable proton images with the sodium phased array in place. METHODS: A novel composite array for combined proton/sodium 3 T breast MRI is compared with a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multichannel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. RESULTS: The composite array coil demonstrates a 2-5× improvement in signal-to-noise ratio for sodium imaging and similar signal-to-noise ratio for proton imaging when compared with a simple single-loop dual resonant design. CONCLUSION: The improved signal-to-noise ratio of the composite array gives breast sodium images of unprecedented quality in reasonable scan times.


Assuntos
Neoplasias da Mama/diagnóstico , Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Feminino , Humanos , Aumento da Imagem/métodos , Prótons , Sódio
19.
Phys Med Biol ; 58(16): 5673-91, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23899515

RESUMO

A number of B1 mapping methods have been introduced. A model to facilitate choice among these methods is valuable, as the performance of each technique is affected by a variety of factors, including acquisition signal-to-noise ratio (SNR). The Bloch-Siegert shift B1 mapping method has recently garnered significant interest. In this paper, we present a statistical model suitable for analysis of the Bloch-Siegert shift method. Unlike previously presented models, the analysis is valid in both low SNR and high SNR regimes. We present a detailed analysis of the performance of the Bloch-Siegert shift B1 mapping method across a broad range of acquisition scenarios, and compare it to two other B1 mapping techniques (the dual angle method and the phase sensitive method). Further validation of the model is presented through both Monte Carlo simulations and experimental results. The simulations and experimental results match the model well, lending confidence to its accuracy. Each technique is found to perform well with high acquisition SNR. However, our results suggest that the dual angle method is not reliable in low SNR environments. Furthermore, the phase sensitive method appears to outperform the Bloch-Siegert shift method in these low-SNR cases, although variations of the Bloch-Siegert method may be possible that improve its performance at low SNR.


Assuntos
Ondas de Rádio , Estatística como Assunto , Imageamento por Ressonância Magnética , Método de Monte Carlo , Imagens de Fantasmas
20.
Eur J Radiol ; 82(5): 734-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22172536

RESUMO

OBJECTIVE: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. MATERIALS AND METHODS: We measured the T1 and T2 relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T1 relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T2 relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T1 and T2 measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. RESULTS: The T1 relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T2 relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T2-weighted FSE, and 3D-FSE-Cube. CONCLUSION: The T1 and T2 changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols.


Assuntos
Osso e Ossos/anatomia & histologia , Cartilagem Articular/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Articulação do Joelho/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/anatomia & histologia , Adulto , Algoritmos , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...