Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780386

RESUMO

Soil microbial activity (SMA) is vital concerning carbon cycling, and its functioning is recognized as the primary factor in modifying soil carbon storage potential. The composition of the microbial community (MC) is significant in sustaining environmental services because the structure and activity of MC also influence nutrient turnover, distribution, and the breakdown rate of soil organic matter. SMA is an essential predictor of soil quality alterations, and microbiome responsiveness is imperative in addressing the escalating sustainability concerns in the Himalayan ecosystem. This study was conducted to evaluate the response of soil microbial and enzyme activities to land conversions in the Northwestern Himalayas (NWH), India. Soil samples were collected from five land use systems (LUSs), including forest, pasture, apple, saffron, and paddy-oilseed, up to a depth of 90 cm. The results revealed a significant difference (p < 0.05) in terms of dehydrogenase (9.97-11.83 TPF µg g-1 day-1), acid phosphatase (22.40-48.43 µg P-NP g-1 h-1), alkaline phosphatase (43.50-61.35 µg P-NP g-1 h-1), arylsulphatase (36.33-48.12 µg P-NP g-1 h-1), fluorescein diacetate hydrolase (12.18-21.59 µg g-1 h-1), bacterial count (67.67-123.33 CFU × 106 g-1), fungal count (19.33-67.00 CFU × 105 g-1), and actinomycetes count (12.00-42.33 CFU × 104 g-1), with the highest and lowest levels in forest soils and paddy-oilseed soils, respectively. Soil enzyme activities and microbial counts followed a pattern: forest > pasture > apple > saffron > paddy-oilseed at all three depths. Paddy-oilseed soils exhibited up to 35% lower enzyme activities than forest soils, implying that land conversion facilitates the depletion of microbiome diversity from surface soils. Additionally, reductions of 49.80% and 62.91% were observed in enzyme activity and microbial counts, respectively, with soil depth (from 0-30 to 60-90 cm). Moreover, the relationship analysis (principal component analysis and correlation) revealed a high and significant (p = 0.05) association between soil microbial and enzyme activities and physicochemical attributes. These results suggest that land conversions need to be restricted to prevent microbiome depletion, reduce the deterioration of natural resources, and ensure the sustainability of soil health.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Florestas , Solo/química , Enzimas , Índia
2.
Mol Biol Rep ; 50(9): 7571-7579, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515708

RESUMO

BACKGROUND: Capsaicin and its analogues known as capsaicinoids are the principal sources of pungency in Capsicum spp. In this study, characterization of North-West Himalayan chilli germplasm and commercial landraces of different Indian states known for different pungency-color combinations was done based on capsaicin concentration. Moreover, molecular variation in pungency among high, medium and mild/not pungent Capsicum spp., especially those adapted to North-West Himalayas were elucidated. METHODS AND RESULTS: Forty-nine genotypes of chilli comprising breeding lines of Kashmiri origin, commercial landraces of Southern Indian origin and one of the world's hottest chilli Bhut Jolokia from Nagaland state of India were used as an experimental material. Wide variation in capsaicin content was observed among the genotypes, wherein, Bhut Jolokia (Capsicum chinense) expressed the highest capsaicin content (10,500.75 µg/g). Further, molecular analysis of PunI gene was done for discovering SNPs responsible for variations in pungency. In the non-pungent Nishat-1 (Capsicum annuum var. grossum), the 650 bp DNA fragment was not amplified due to 2.5 kb deletion spanning the putative promoter and first exon of AT3. The amplified DNA product for high and medium pungent was sequencing. Sequence alignment among revealed SNPs which were further observed responsible for variations in amino acid sequence and protein structure. CONCLUSION: The observed variation in protein structure might be responsible for high capsaicin production in one genotype as compared to the other and hence the protein conformation determines its interaction with the substrate.


Assuntos
Capsicum , Capsicum/genética , Capsaicina/farmacologia , Capsaicina/análise , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Sequência de Aminoácidos , Frutas/genética
3.
PeerJ ; 11: e15266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304860

RESUMO

Current study was conducted to evaluate the effect of important land uses and soil depth on soil organic carbon pools viz. total organic carbon, Walkley and black carbon, labile organic carbon, particulate organic carbon, microbial biomass carbon and carbon management index (CMI) in the north Western Himalayas, India. Soil samples from five different land uses viz. forest, pasture, apple, saffron and paddy-oilseed were collected up to a depth of 1 m (0-30, 30-60, 60-90 cm). The results revealed that regardless of soil depth, all the carbon pools differed significantly (p < 0.05) among studied land use systems with maximum values observed under forest soils and lowest under paddy-oilseed soils. Further, upon evaluating the impact of soil depth, a significant (p < 0.05) decline and variation in all the carbon pools was observed with maximum values recorded in surface (0-30 cm) soils and least in sub-surface (60-90 cm) layers. CMI was higher in forest soils and lowest in paddy-oilseed. From regression analysis, a positive significant association (high R-squared values) between CMI and soil organic carbon pools was also observed at all three depths. Therefore, land use changes and soil depth had a significant impact on soil organic carbon pools and eventually on CMI, which is used as deterioration indicator or soil carbon rehabilitation that influences the universal goal of sustainability in the long run.


Assuntos
Carbono , Solo , Biomassa
4.
Saudi J Biol Sci ; 28(10): 5526-5537, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588862

RESUMO

Superoxide Dismutase SODs are defense associated proteins that detoxify ROS and primarily serve as scavengers. They have been described in numerous plant species, but their in-depth characterization in Brassica rapa has not been reported. Therefore, the present investigation on genome wide study of SOD gene family was conducted to identify BrSOD genes, their domain-based organization, gene structure analysis, phylogenetic analysis, intron-exon structure of genes and expression analysis. The sequence characterization of Super oxide dismutase gene family in Brassica rapa, their syntenic associateship of conserved motifs and phylogenetic correlationship, prediction of cis-elements and determing the expression analysis in distinct tissues namely plant callus, root, stem, leaf, flower, and silique under abiotic conditions have been analysed using different software's. The study on SOD gene family identified 17 BrSOD genes which were grouped into eight BrCu-ZnSODs and nine BrFe-MnSODs domain-based organization. Furthermore, the conserved character of BrSODs were confirmed by intron-exon organisation, motif arrangements and domain architectural investigations. Expression analysis using RNA Sequence data of different developmental stages proclaimed that genes were manifested in all six tissues with an exception of BrCu-ZnSOD3, which was not manifested in roots; however, whose transcript was detected in all other tested tissues. The study has genome wide insight into the occurrence and functional specifications of BrSOD gene family in Brassica rapa that can be potentially utilized in breeding program for resilience to climate change and abiotic stresses tolerance Brassica variety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...