Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38231973

RESUMO

Stereolithography (SLA) additive manufacturing is a method of manufacturing capable of generating complex geometric shapes with extremely high accuracy. Classic SLA uses UV curable resins, particularly polylactic acid (PLA), for part generation, but recent research has focused on utilizing this technology for the generation of various composite materials. There has been success in manufacturing composite materials using this technology, but little research has been performed on the generation of carbon-fiber-reinforced composite materials. Carbon fiber stereolithography (CF-SLA) is often overlooked due to carbon fiber's natural inability to bond with PLA. To overcome this boundary, surface modification techniques were used on chopped carbon fibers to achieve greater bonding. Here, two modification techniques were explored: a sodium dodecyl sulfate (SDS) surfactant addition and nitric acid (HNO3) etching. These methods were used to functionalize and prepare the surface of chopped carbon fiber (CF) for bonding with cured PLA resin. Treated fibers were dispersed in generic PLA resin, and tensile test specimens were printed for examining the reinforcement potential of the two treatment methods. Additional complexities arise during printing with fibers including fiber alignment, accumulation, and fiber fallout. To address these issues, a novel in-process mixing method was developed to maintain fiber dispersion. A two-level three-factor factorial design was performed for both treatment methods to determine optimal printing parameters. Through mechanical testing, atomic force microscopy, scanning electron microscopy, and contact angle measurements, the accompanying material property changes were characterized to further develop the field of fiber-reinforced liquid crystal display (LCD) additive manufacturing. After testing, it was found that composites created with SDS nanoparticle modification were stronger than both the acid etched fiber sample and plain PLA. Specifically, SDS surface treatment resulted in a 15% increase in modulus and maximum strength of the sample, mainly by enhancing the interlayer bonding between CF and PLA.

2.
Micromachines (Basel) ; 13(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35630190

RESUMO

In this study, we propose a duckbill valve microfluidic pump that relies on an electromagnetic actuation mechanism. An FEA/CFD-based approach was adopted for the design of the device due to the coupled electromagnetic-solid-fluid interactions in the device. The simulation methodology was confirmed with the previously published data in the literature to ensure the accuracy of the simulations. The proposed optimum duckbill valve micropump can pump 2.45 µL of fluid during the first 1 s, including both contraction and expansion phases, almost 16.67% more than the basic model. In addition, the model can pump a maximum volume of 0.26 µL of fluid at the end of the contraction phase (at 0.5 s) when the magnetic flux density is at maximum (0.027 T). The use of a duckbill valve in the model also reduces the backflow by almost 7.5 times more than the model without any valve. The proposed device could potentially be used in a broad range of applications, such as an insulin dosing system for Type 1 diabetic patients, artificial organs to transport blood, organ-on-chip applications, and so on.

3.
Micromachines (Basel) ; 13(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630231

RESUMO

In this study, we assessed the performance characteristics of five different magnetorheological micropump designs, two of which were our proposed designs, while others were from the existing designs in the literature. Comparisons have been performed based on physics-based simulations, and the fully coupled magneto-solid-fluid interaction simulations were carried out in COMSOL Multiphysics software. For a fair and meaningful comparison, both the material and geometric properties were kept the same, and the simulations were run for one complete pumping cycle. The results showed that the proposed flap and duckbill valve models could pump 1.09 µL and 1.16 µL respectively in 1 s, which was more than the rest of the existing micropump models. Moreover, at 0.5 s, when the magnetic flux density was maximum, the flap and duckbill valve models could pump almost twice as fluid as some of the existing valve models did. The results also demonstrated that the flap and duckbill valve models were nearly five times faster than some of existing models. In conclusion, the proposed two micropump models could propel more net fluid volume than the existing micropump designs, experienced low leakage during the contraction and expansion phase, and had faster response times. We believe that the present study provides valuable insights for future micropump designs, which have an extensive range of application areas, ranging from insulin dosing systems for T1D patients to artificial organs to transport blood and from organ-on-chip applications to micro-cooling systems.

4.
Adv Mater ; 30(4)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29215174

RESUMO

Nanotwinned (nt)-metals exhibit superior mechanical and electrical properties compared to their coarse-grained and nanograined counterparts. nt-metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt-metals. Microscale 3D printing of nt-Cu is demonstrated with high density of coherent twin boundaries using a new room temperature process based on localized PED (L-PED). The 3D printed nt-Cu is fully dense, with low to none impurities, and low microstructural defects, and without obvious interface between printed layers, which overall result in good mechanical and electrical properties, without any postprocessing steps. The L-PED process enables direct 3D printing of layer-by-layer and complex 3D microscale nt-Cu structures, which may find applications for fabrication of metamaterials, sensors, plasmonics, and micro/nanoelectromechanical systems.

5.
Nano Lett ; 18(1): 208-214, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29257699

RESUMO

Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.

6.
ACS Appl Mater Interfaces ; 9(28): 24220-24229, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28644620

RESUMO

Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

7.
ACS Appl Mater Interfaces ; 8(4): 2540-51, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26795238

RESUMO

High performance piezoelectric devices based on arrays of PVDF-TrFE nanofibers have been introduced in the literature for a variety of applications including energy harvesting and sensing. In this Research Article, we utilize uniaxial tensile test on arrays of nanofibers, microtensile, and nanoindentation and piezo-response force microscopy (PFM) on individual nanofibers, as wells as DSC, XRD, and FTIR spectroscopy to investigate the effect of annealing on microstructure, mechanical, and piezoelectric properties of arrays and individual electrospun nanofibers. For PVDF-TrFE nanofibers annealing in a temperature between the Curie and melting temperature (in paraelectric phase) results in ∼70% increase in crystallinity of the nanofibers. The findings of our multiscale experiments reveal that this improvement in crystallinity results in ∼3-fold increase in elastic modulus, and ∼55% improvement in piezoelectric constant. Meanwhile, the ductility and tensile toughness of the nanofibers drop by ∼1 order of magnitude. In addition, nanoscale cracks were observed on the surface of the annealed nanofibers; however, they did not result in significant change in the strength of the nanofibers. The results of this work may have important implications for applications of PVDF-TrFE in energy harvesting, biomedical, and sensor areas.


Assuntos
Eletricidade , Fenômenos Mecânicos , Nanofibras/química , Temperatura , Varredura Diferencial de Calorimetria , Módulo de Elasticidade , Nanofibras/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Difração de Raios X
8.
ACS Appl Mater Interfaces ; 7(9): 5358-66, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25691363

RESUMO

We report on highly stretchable piezoelectric structures of electrospun PVDF-TrFE nanofibers. We fabricated nanofibrous PVDF-TrFE yarns via twisting their electrospun ribbons. Our results show that the twisting process not only increases the failure strain but also increases overall strength and toughness. The nanofibrous yarns achieved a remarkable energy to failure of up to 98 J/g. Through overtwisting process, we fabricated polymeric coils out of twisted yarns that stretched up to ∼740% strain. This enhancement in mechanical properties is likely induced by increased interactions between nanofibers, contributed by friction and van der Waals interactions, as well as favorable surface charge (Columbic) interactions as a result of piezoelectric effect, for which we present a theoretical model. The fabricated yarns and coils show great promise for applications in high-performance lightweight structural materials and superstretchable piezoelectric devices and flexible energy harvesting applications.

9.
Materials (Basel) ; 8(2): 799-814, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28787971

RESUMO

We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA