Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712286

RESUMO

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

2.
Nat Commun ; 15(1): 51, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168093

RESUMO

Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Multiômica , Medicina de Precisão , Fatores de Transcrição/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/diagnóstico , Proteína EWS de Ligação a RNA/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/terapia , Receptores Proteína Tirosina Quinases , Biomarcadores Tumorais/genética , Proteínas de Fusão Oncogênica/genética , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a DNA/genética
3.
Nat Struct Mol Biol ; 30(11): 1640-1652, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735617

RESUMO

The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.


Assuntos
Sarcoma Sinovial , Humanos , Animais , Camundongos , Sarcoma Sinovial/genética , Sarcoma Sinovial/metabolismo , Complexo Repressor Polycomb 1/genética , Ativação Transcricional , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Elife ; 122023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261974

RESUMO

Mutations in genes encoding components of chromatin modifying and remodeling complexes are among the most frequently observed somatic events in human cancers. For example, missense and nonsense mutations targeting the mixed lineage leukemia family member 3 (MLL3, encoded by KMT2C) histone methyltransferase occur in a range of solid tumors, and heterozygous deletions encompassing KMT2C occur in a subset of aggressive leukemias. Although MLL3 loss can promote tumorigenesis in mice, the molecular targets and biological processes by which MLL3 suppresses tumorigenesis remain poorly characterized. Here, we combined genetic, epigenomic, and animal modeling approaches to demonstrate that one of the mechanisms by which MLL3 links chromatin remodeling to tumor suppression is by co-activating the Cdkn2a tumor suppressor locus. Disruption of Kmt2c cooperates with Myc overexpression in the development of murine hepatocellular carcinoma (HCC), in which MLL3 binding to the Cdkn2a locus is blunted, resulting in reduced H3K4 methylation and low expression levels of the locus-encoded tumor suppressors p16/Ink4a and p19/Arf. Conversely, elevated KMT2C expression increases its binding to the CDKN2A locus and co-activates gene transcription. Endogenous Kmt2c restoration reverses these chromatin and transcriptional effects and triggers Ink4a/Arf-dependent apoptosis. Underscoring the human relevance of this epistasis, we found that genomic alterations in KMT2C and CDKN2A were associated with similar transcriptional profiles in human HCC samples. These results collectively point to a new mechanism for disrupting CDKN2A activity during cancer development and, in doing so, link MLL3 to an established tumor suppressor network.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p14ARF/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Cromatina , Carcinogênese
5.
Proc Natl Acad Sci U S A ; 119(17): e2110557119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35442775

RESUMO

Anticancer drug development campaigns often fail due to an incomplete understanding of the therapeutic index differentiating the efficacy of the agent against the cancer and its on-target toxicities to the host. To address this issue, we established a versatile preclinical platform in which genetically defined cancers are produced using somatic tissue engineering in transgenic mice harboring a doxycycline-inducible short hairpin RNA against the target of interest. In this system, target inhibition is achieved by the addition of doxycycline, enabling simultaneous assessment of efficacy and toxicity in the same animal. As proof of concept, we focused on CDK9­a cancer target whose clinical development has been hampered by compounds with poorly understood target specificity and unacceptable toxicities. We systematically compared phenotypes produced by genetic Cdk9 inhibition to those achieved using a recently developed highly specific small molecule CDK9 inhibitor and found that both perturbations led to robust antitumor responses. Remarkably, nontoxic levels of CDK9 inhibition could achieve significant treatment efficacy, and dose-dependent toxicities produced by prolonged CDK9 suppression were largely reversible upon Cdk9 restoration or drug withdrawal. Overall, these results establish a versatile in vivo target validation platform that can be employed for rapid triaging of therapeutic targets and lend support to efforts aimed at advancing CDK9 inhibitors for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Interferência de RNA
6.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35159116

RESUMO

The survival rate among children with relapsed tumors remains poor, due to tumor heterogeneity, lack of directly actionable tumor drivers and multidrug resistance. Novel personalized medicine approaches tailored to each tumor are urgently needed to improve cancer treatment. Current pediatric precision oncology platforms, such as the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) study, reveal that molecular profiling of tumor tissue identifies targets associated with clinical benefit in a subgroup of patients only and should be complemented with functional drug testing. In such an approach, patient-derived tumor cells are exposed to a library of approved oncological drugs in a physiological setting, e.g., in the form of animal avatars injected with patient tumor cells. We used molecularly fully characterized tumor samples from the INFORM study to compare drug screen results of individual patient-derived cell models in functional assays: (i) patient-derived spheroid cultures within a few days after tumor dissociation; (ii) tumor cells reisolated from the corresponding mouse PDX; (iii) corresponding long-term organoid-like cultures and (iv) drug evaluation with the corresponding zebrafish PDX (zPDX) model. Each model had its advantage and complemented the others for drug hit and drug combination selection. Our results provide evidence that in vivo zPDX drug screening is a promising add-on to current functional drug screening in precision medicine platforms.

8.
Gut ; 71(8): 1613-1628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34509979

RESUMO

OBJECTIVE: Large-scale genome sequencing efforts of human tumours identified epigenetic modifiers as one of the most frequently mutated gene class in human cancer. However, how these mutations drive tumour development and tumour progression are largely unknown. Here, we investigated the function of the histone demethylase KDM6A in gastrointestinal cancers, such as liver cancer and pancreatic cancer. DESIGN: Genetic alterations as well as expression analyses of KDM6A were performed in patients with liver cancer. Genetic mouse models of liver and pancreatic cancer coupled with Kdm6a-deficiency were investigated, transcriptomic and epigenetic profiling was performed, and in vivo and in vitro drug treatments were conducted. RESULTS: KDM6A expression was lost in 30% of patients with liver cancer. Kdm6a deletion significantly accelerated tumour development in murine liver and pancreatic cancer models. Kdm6a-deficient tumours showed hyperactivation of mTORC1 signalling, whereas endogenous Kdm6a re-expression by inducible RNA-interference in established Kdm6a-deficient tumours diminished mTORC1 activity resulting in attenuated tumour progression. Genome-wide transcriptional and epigenetic profiling revealed direct binding of Kdm6a to crucial negative regulators of mTORC1, such as Deptor, and subsequent transcriptional activation by epigenetic remodelling. Moreover, in vitro and in vivo genetic epistasis experiments illustrated a crucial function of Deptor and mTORC1 in Kdm6a-dependent tumour suppression. Importantly, KDM6A expression in human tumours correlates with mTORC1 activity and KDM6A-deficient tumours exhibit increased sensitivity to mTORC1 inhibition. CONCLUSION: KDM6A is an important tumour suppressor in gastrointestinal cancers and acts as an epigenetic toggle for mTORC1 signalling. Patients with KDM6A-deficient tumours could benefit of targeted therapy focusing on mTORC1 inhibition.


Assuntos
Histona Desmetilases/metabolismo , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Epigênese Genética , Histona Desmetilases/genética , Histonas/genética , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
9.
Nat Commun ; 12(1): 5356, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531368

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer1. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN2. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression. We find that the EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1, which physiologically safeguards controlled cell division, through binding to a proximal enhancer-like GGAA-microsatellite, thereby promoting tumor growth and poor clinical outcome. Via integration of transcriptome-profiling and functional in vitro and in vivo experiments including CRISPR-mediated enhancer editing, we discover that high PRC1 expression creates a therapeutic vulnerability toward PLK1 inhibition that can repress even chemo-resistant EwS cells by triggering mitotic catastrophe.Collectively, our results exemplify how aberrant PRC1 activation by a dominant oncogene can confer malignancy but provide opportunities for targeted therapy, and identify PRC1 expression as an important determinant to predict the efficacy of PLK1 inhibitors being used in clinical trials.


Assuntos
Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Sarcoma de Ewing/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Criança , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Terapêutica com RNAi/métodos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/terapia , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinase 1 Polo-Like
10.
Cancer Discov ; 11(10): 2620-2637, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34078620

RESUMO

Reduced protein levels of SMARCB1 (also known as BAF47, INI1, SNF5) have long been observed in synovial sarcoma. Here, we show that combined Smarcb1 genetic loss with SS18-SSX expression in mice synergized to produce aggressive tumors with histomorphology, transcriptomes, and genome-wide BAF-family complex distributions distinct from SS18-SSX alone, indicating a defining role for SMARCB1 in synovial sarcoma. Smarcb1 silencing alone in mesenchyme modeled epithelioid sarcomagenesis. In mouse and human synovial sarcoma cells, SMARCB1 was identified within PBAF and canonical BAF (CBAF) complexes, coincorporated with SS18-SSX in the latter. Recombinant expression of CBAF components in human cells reconstituted CBAF subcomplexes that contained equal levels of SMARCB1 regardless of SS18 or SS18-SSX inclusion. In vivo, SS18-SSX expression led to whole-complex CBAF degradation, rendering increases in the relative prevalence of other BAF-family subtypes, PBAF and GBAF complexes, over time. Thus, SS18-SSX alters BAF subtypes levels/balance and genome distribution, driving synovial sarcomagenesis. SIGNIFICANCE: The protein level of BAF component SMARCB1 is reduced in synovial sarcoma but plays a defining role, incorporating into PBAF and SS18-SSX-containing canonical BAF complexes. Reduced levels of SMARCB1 derive from whole-complex degradation of canonical BAF driven by SS18-SSX, with relative increases in the abundance of other BAF-family subtypes.See related commentary by Maxwell and Hargreaves, p. 2375.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Proteínas de Fusão Oncogênica/genética , Proteína SMARCB1/genética , Sarcoma Sinovial/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sarcoma Sinovial/patologia
11.
J Clin Med ; 10(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918045

RESUMO

Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.

12.
EMBO Mol Med ; 12(11): e11131, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33047515

RESUMO

Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Adolescente , Criança , Humanos , Medicina Molecular , Sarcoma/genética , Sarcoma/terapia
13.
J Pathol Clin Res ; 6(3): 178-184, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32352245

RESUMO

Recently a novel subtype of endometrial stromal sarcoma (ESS) defined by recurrent genomic alterations involving BCOR has been described (HGESS-BCOR). We identified a case of HGESS-BCOR with a ZC3H7B-BCOR gene fusion, which harbored an amplification of the MDM2 locus. This index case prompted us to investigate MDM2 amplification in four additional cases of HGESS-BCOR. Tumors were analyzed for MDM2 amplification by array-based profiling of copy number alterations (CNAs) and fluorescence in situ hybridization (FISH), as well as for MDM2 expression by immunohistochemistry (IHC). Additionally, a cohort of other mesenchymal uterine neoplasms, including 17 low-grade ESS, 6 classical high-grade ESS with YWHAE-rearrangement, 16 uterine tumors resembling ovarian sex cord tumors, 7 uterine leiomyomas and 8 uterine leiomyosarcomas, was analyzed for CNAs in MDM2. Copy number profiling identified amplification of the 12q15 region involving the MDM2 locus in all five HGESS-BCOR. Subsequent validation analyses of three tumors confirmed MDM2 amplification using MDM2 FISH. Accordingly, IHC showed MDM2 overexpression in all analyzed cases. None of the other uterine neoplasms in our series, including tumors that are in the histopathological differential diagnoses of HGESS-BCOR, showed copy number gains of MDM2. Together, our results indicate that HGESS-BCOR carries MDM2 amplifications, which has diagnostic implications and could potentially be used for targeted therapies in these clinically aggressive tumors.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Sarcoma do Estroma Endometrial/genética , Neoplasias Uterinas , Biomarcadores Tumorais/genética , Estudos de Coortes , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Fusão Gênica , Rearranjo Gênico , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Proteínas de Ligação a RNA/genética , Sarcoma do Estroma Endometrial/patologia , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
14.
Nat Rev Cancer ; 19(8): 420-438, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31300807

RESUMO

The spectrum of tumours arising in childhood is fundamentally different from that seen in adults, and they are known to be divergent from adult malignancies in terms of cellular origins, epidemiology, genetic complexity, driver mutations and underlying mutational processes. Despite the immense knowledge generated through sequencing efforts and functional characterization of identified (epi-)genetic alterations over the past decade, the clinical implications of this knowledge have so far been limited. Novel preclinical platforms such as the European Innovative Therapies for Children with Cancer-Paediatric Preclinical Proof-of-Concept Platform and the US-based Pediatric Preclinical Testing Consortium are being developed to try to change this by aiming to recapitulate the extensive heterogeneity of paediatric tumours and thereby, hopefully, improve the ability to predict clinical benefit. Numerous studies have also been established worldwide to provide patients with access to real-time molecular profiling and the possibility of more precise mechanism-of-action-based treatments. In addition to tumour-intrinsic findings and mechanisms, ongoing studies are investigating features such as the immune microenvironment of paediatric tumours in comparison with adult cancers - currently of very timely clinical relevance. However, there is an ongoing need for rigorous preclinical biomarker and target validation to feed into the next generation of molecularly stratified clinical trials. This Review aims to provide a comprehensive state-of-the-art overview of the molecular landscape of paediatric solid tumours, including their underlying genomic alterations and interactions with the microenvironment, complemented with our current understanding of potential therapeutic vulnerabilities and how these can be preclinically tested using more accurate predictive methods. Finally, we provide an outlook on the challenges and opportunities associated with translating this overwhelming scientific progress into real clinical benefit.


Assuntos
Neoplasias/genética , Neoplasias/terapia , Pediatria/métodos , Ciclo Celular , Epigênese Genética , Europa (Continente) , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genômica , Humanos , Sistema Imunitário , Mutação , Transdução de Sinais , Microambiente Tumoral , Estados Unidos
15.
Cancer Discov ; 9(7): 962-979, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068365

RESUMO

Mutations in the TP53 tumor suppressor gene are common in many cancer types, including the acute myeloid leukemia (AML) subtype known as complex karyotype AML (CK-AML). Here, we identify a gain-of-function (GOF) Trp53 mutation that accelerates CK-AML initiation beyond p53 loss and, surprisingly, is required for disease maintenance. The Trp53R172H mutation (TP53R175H in humans) exhibits a neomorphic function by promoting aberrant self-renewal in leukemic cells, a phenotype that is present in hematopoietic stem and progenitor cells (HSPC) even prior to their transformation. We identify FOXH1 as a critical mediator of mutant p53 function that binds to and regulates stem cell-associated genes and transcriptional programs. Our results identify a context where mutant p53 acts as a bona fide oncogene that contributes to the pathogenesis of CK-AML and suggests a common biological theme for TP53 GOF in cancer. SIGNIFICANCE: Our study demonstrates how a GOF p53 mutant can hijack an embryonic transcription factor to promote aberrant self-renewal. In this context, mutant Trp53 functions as an oncogene to both initiate and sustain myeloid leukemia and suggests a potential convergent activity of mutant Trp53 across cancer types.This article is highlighted in the In This Issue feature, p. 813.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Mutação com Ganho de Função , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Plasticidade Celular/genética , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Curr Opin Genet Dev ; 54: 17-24, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877988

RESUMO

Cellular senescence is implicated in numerous biological processes, and can play pleiotropic, sometimes opposing, roles in cancer. Several triggers, cell types, contexts, and senescence-associated phenotypes introduce a multitude of possibilities when studying this process and its biological consequences. Recent studies continue to characterize cellular senescence at different levels, using a combination of functional screens, in silico analysis, omics characterizations and more targeted studies. However, a comprehensive analysis of its context-dependent effects and multiple phenotypes is required. Application of state-of-the-art and emerging technologies will increase our understanding of this complex process and better guide future strategies to harness senescence to our advantage, or to target it when detrimental.


Assuntos
Senescência Celular/genética , Detecção Precoce de Câncer , Neoplasias/genética , Humanos , Fenótipo
18.
Cancer Cell ; 33(3): 527-541.e8, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29502955

RESUMO

Synovial sarcoma is an aggressive cancer invariably associated with a chromosomal translocation involving genes encoding the SWI-SNF complex component SS18 and an SSX (SSX1 or SSX2) transcriptional repressor. Using functional genomics, we identify KDM2B, a histone demethylase and component of a non-canonical polycomb repressive complex 1 (PRC1.1), as selectively required for sustaining synovial sarcoma cell transformation. SS18-SSX1 physically interacts with PRC1.1 and co-associates with SWI/SNF and KDM2B complexes on unmethylated CpG islands. Via KDM2B, SS18-SSX1 binds and aberrantly activates expression of developmentally regulated genes otherwise targets of polycomb-mediated repression, which is restored upon KDM2B depletion, leading to irreversible mesenchymal differentiation. Thus, SS18-SSX1 deregulates developmental programs to drive transformation by hijacking a transcriptional repressive complex to aberrantly activate gene expression.


Assuntos
Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Sarcoma Sinovial/metabolismo , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Expressão Gênica/fisiologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/genética , Sarcoma Sinovial/genética
19.
Genes Dev ; 31(20): 2085-2098, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138277

RESUMO

Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.


Assuntos
Reprogramação Celular , Senescência Celular , Perfilação da Expressão Gênica , RNA Interferente Pequeno , Análise de Sequência de RNA , Serina-Treonina Quinases TOR/fisiologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Análise de Célula Única , Serina-Treonina Quinases TOR/antagonistas & inibidores
20.
Genes Dev ; 30(19): 2187-2198, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27737960

RESUMO

Oncogene-induced senescence (OIS) is a potent tumor suppressor mechanism. To identify senescence regulators relevant to cancer, we screened an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). Here, we describe how knockdown of the SWI/SNF component ARID1B prevents OIS and cooperates with RAS to induce liver tumors. ARID1B controls p16INK4a and p21CIP1a transcription but also regulates DNA damage, oxidative stress, and p53 induction, suggesting that SWI/SNF uses additional mechanisms to regulate senescence. To systematically identify SWI/SNF targets regulating senescence, we carried out a focused shRNA screen. We discovered several new senescence regulators, including ENTPD7, an enzyme that hydrolyses nucleotides. ENTPD7 affects oxidative stress, DNA damage, and senescence. Importantly, expression of ENTPD7 or inhibition of nucleotide synthesis in ARID1B-depleted cells results in re-establishment of senescence. Our results identify novel mechanisms by which epigenetic regulators can affect tumor progression and suggest that prosenescence therapies could be employed against SWI/SNF-mutated cancers.


Assuntos
Carcinoma Hepatocelular/genética , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apirase/metabolismo , Carcinoma Hepatocelular/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Epigênese Genética/genética , Feminino , Humanos , Neoplasias Hepáticas/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...