Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731629

RESUMO

This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 µM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 µM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 µM).


Assuntos
Antineoplásicos , Antioxidantes , Benzimidazóis , Proliferação de Células , Desenho de Fármacos , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Células MCF-7 , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos
2.
Future Med Chem ; 15(14): 1251-1272, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37551679

RESUMO

Aim: The aim was synthesis of novel benzazoles bearing amidino and 2-hydroxyphenyl substituents to explore their biological activity. Methods: Condensation of 5-substituted salicylaldehydes and intermediates gave new benzazoles by previously published and developed procedures, which were tested for antibacterial and antiproliferative activity in vitro. Results: The best antibacterial activity showed benzimidazole with 2-imidazolinyl group 27 and benzothiazole with an unsubstituted amidine 48 (minimum inhibitory concentration 8 µg/ml). Benzothiazole 53 proved most potent at inhibiting proliferation of all cancer cells (IC50: 1.2-2.0 µM). Conclusion: Most active compounds have been recognized as lead compounds for additional optimization to improve their biological activity. The type of amidine moiety markedly influenced the biological activity. Benzothiazoles showed improved antiproliferative activity in comparison to benzimidazoles.

3.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175129

RESUMO

Herein, we present the design and synthesis of novel N-substituted benzimidazole-derived Schiff bases, and the evaluation of their antiviral, antibacterial, and antiproliferative activity. The impact on the biological activity of substituents placed at the N atom of the benzimidazole nuclei and the type of substituents attached at the phenyl ring were examined. All of the synthesized Schiff bases were evaluated in vitro for their antiviral activity against different viruses, antibacterial activity against a panel of bacterial strains, and antiproliferative activity on several human cancer cell lines, thus enabling the study of the structure-activity relationships. Some mild antiviral effects were noted, although at higher concentrations in comparison with the included reference drugs. Additionally, some derivatives showed a moderate antibacterial activity, with precursor 23 being broadly active against most of the tested bacterial strains. Lastly, Schiff base 40, a 4-N,N-diethylamino-2-hydroxy-substituted derivative bearing a phenyl ring at the N atom on the benzimidazole nuclei, displayed a strong antiproliferative activity against several cancer cell lines (IC50 1.1-4.4 µM). The strongest antitumoral effect was observed towards acute myeloid leukemia (HL-60).


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Bases de Schiff/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Benzimidazóis/farmacologia , Antivirais/farmacologia
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614053

RESUMO

In this research, the synthesis, photochemistry, and computational study of new cis- and trans-isomers of amino-thienostilbenes is performed to test the efficiency of their production and acid resistance, and to investigate their electronic structure, photoreactivity, photophysical characteristics, and potential biological activity. The electronic structure and conformations of synthesized thienostilbene amines and their photocyclization products are examined computationally, along with molecular modeling of amines possessing two thiophene rings that showed inhibitory potential toward cholinesterases. New amino-styryl thiophenes, with favorable photophysical properties and proven acid resistance, represent model compounds for their water-soluble ammonium salts as potential styryl optical dyes. The comparison with organic dyes possessing a trans-aminostilbene subunit as the scaffold shows that the newly synthesized trans-aminostilbenes have very similar absorbance wavelengths. Furthermore, their functionalized cis-isomers and photocyclization products are good candidates for cholinesterase inhibitors because of the structural similarity of the molecular skeleton to some already proven bioactive derivatives.


Assuntos
Benzilaminas , Tiofenos , Fotoquímica , Tiofenos/farmacologia , Modelos Moleculares , Corantes
5.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833917

RESUMO

The current COVID-19 outbreak has highlighted the need for the development of new vaccines and drugs to combat Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Recently, various drugs have been proposed as potentially effective against COVID-19, such as remdesivir, infliximab and imatinib. Natural plants have been used as an alternative source of drugs for thousands of years, and some of them are effective for the treatment of various viral diseases. Emodin (1,3,8-trihydroxy-6-methylanthracene-9,10-dione) is a biologically active anthraquinone with antiviral activity that is found in various plants. We studied the selectivity of electrophilic aromatic substitution reactions on an emodin core (halogenation, nitration and sulfonation), which resulted in a library of emodin derivatives. The main aim of this work was to carry out an initial evaluation of the potential to improve the activity of emodin against human coronavirus NL63 (HCoV-NL63) and also to generate a set of initial SAR guidelines. We have prepared emodin derivatives which displayed significant anti-HCoV-NL63 activity. We observed that halogenation of emodin can improve its antiviral activity. The most active compound in this study was the iodinated emodin analogue E_3I, whose anti-HCoV-NL63 activity was comparable to that of remdesivir. Evaluation of the emodin analogues also revealed some unwanted toxicity to Vero cells. Since new synthetic routes are now available that allow modification of the emodin structure, it is reasonable to expect that analogues with significantly improved anti-HCoV-NL63 activity and lowered toxicity may thus be generated.


Assuntos
Antivirais/farmacologia , Coronavirus Humano NL63/efeitos dos fármacos , Emodina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coronavirus Humano NL63/isolamento & purificação , Emodina/síntese química , Halogenação , Humanos , Células Vero
6.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443523

RESUMO

Newly designed and synthesized cyano, amidino and acrylonitrile 2,5-disubstituted furane derivatives with either benzimidazole/benzothiazole nuclei have been evaluated for antitumor and antimicrobial activity. For potential antitumor activity, the compounds were tested in 2D and 3D cell culture methods on three human lung cancer cell lines, A549, HCC827 and NCI-H358, with MTS cytotoxicity and BrdU proliferation assays in vitro. Compounds 5, 6, 8, 9 and 15 have been proven to be compounds with potential antitumor activity with high potential to stop the proliferation of cells. In general, benzothiazole derivatives were more active in comparison to benzimidazole derivatives. Antimicrobial activity was evaluated with Broth microdilution testing (according to CLSI (Clinical Laboratory Standards Institute) guidelines) on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Additionally, Saccharomyces cerevisiae was included in testing as a eukaryotic model organism. Compounds 5, 6, 8, 9 and 15 showed the most promising antibacterial activity. In general, the compounds showed antitumor activity, higher in 2D assays in comparison with 3D assays, on all three cell lines in both assays. In natural conditions, compounds with such an activity profile (less toxic but still effective against tumor growth) could be promising new antitumor drugs. Some of the tested compounds showed antimicrobial activity. In contrast to ctDNA, the presence of nitro group or chlorine in selected furane-benzothiazole structures did not influence the binding mode with AT-DNA. All compounds dominantly bound inside the minor groove of AT-DNA either in form of monomers or dimer and higher-order aggregates.


Assuntos
Anti-Infecciosos/farmacologia , Benzimidazóis/farmacologia , Benzotiazóis/farmacologia , Neoplasias/tratamento farmacológico , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Relação Estrutura-Atividade
7.
Br J Pharmacol ; 178(2): 363-377, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085774

RESUMO

BACKGROUND AND PURPOSE: Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low. EXPERIMENTAL APPROACH: Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine. in vitro evaluation included testing against sensitive and resistant Plasmodium falciparum, cytotoxicity against HepG2 cells, accumulation and retention in human erythrocytes, antibacterial activity, and mode of action studies (delayed death phenotype and haem polymerization). in vivo assessment enabled determination of pharmacokinetic profiles in mice, rats, dogs, and monkeys and in vivo efficacy in a humanized mouse model. KEY RESULTS: Novel fast-acting azalides were highly active in vitro against P. falciparum strains exhibiting various resistance patterns, including chloroquine-resistant strains. Excellent antimalarial activity was confirmed in a P. falciparum murine model by strong inhibition of haemozoin-containing trophozoites and quick clearance of parasites from the blood. Pharmacokinetic analysis revealed that compounds are metabolically stable and have moderate oral bioavailability, long half-lives, low clearance, and substantial exposures, with blood cells as the preferred compartment, especially infected erythrocytes. Fast anti-plasmodial action is achieved by the high accumulation into infected erythrocytes and interference with parasite haem polymerization, a mode of action different from slow-acting azithromycin. CONCLUSION AND IMPLICATIONS: The hybrid derivatives described here represent excellent antimalarial drug candidates with the potential for clinical use in malaria therapy.


Assuntos
Antimaláricos , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Cães , Malária/tratamento farmacológico , Camundongos , Plasmodium falciparum , Ratos
8.
Int J Antimicrob Agents ; 56(5): 106147, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32853671

RESUMO

Increasing bacterial resistance to existing antibiotics presents a serious threat to human health, and new antibacterial agents are desperately needed. Unfortunately, the number of newly marketed antibiotics has decreased dramatically in recent years. Withdrawal of the macrolide antibiotic telithromycin and the inability of solithromycin to gain marketing approval have prompted our efforts to search for new anti-infective macrolide compounds. Here we present the design, synthesis and biological evaluation of a novel hybrid class of azithromycin conjugates, the macrozones. Evaluation of prepared compounds against a panel of pathogenic bacteria revealed that these molecules showed excellent activities against susceptible Streptococcus pneumoniae, Streptococcus pyogenes and Enterococcus faecalis strains comparable with or better than azithromycin. Furthermore, prepared macrozones exhibited excellent activity against efflux resistant S. pneumoniae, which was 32 times better than that of azithromycin, and very good activity against an efflux resistant Staphylococcus aureus strain against which azithromycin is inactive. The results described here can serve as a good basis to guide further activities directed toward the discovery of more potent macrolide anti-infectives.


Assuntos
Antibacterianos/farmacologia , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Desenho de Fármacos , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla/fisiologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Tiossemicarbazonas/química
9.
Pulm Pharmacol Ther ; 55: 75-83, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776489

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a complex lung disease with incompletely understood pathophysiology. Effectiveness of available medicines is limited and the need for new and improved therapies remains. Due to complexity of the disease, it is difficult to develop predictable in vitro models. In this study we have described precision-cut lung slices (PCLS) prepared from bleomycin treated mice as an in vitro model for testing of novel compounds with antifibrotic activity. We have shown that PCLS during in vitro incubation retain characteristics of bleomycin model with increased expression of fibrosis related genes ACTA2 (α-smooth muscle actin), COL1A1 (collagen 1), FN1 (fibronectin 1), MMP12 (matrix metalloproteinase 12) and TIMP1 (tissue inhibitor of metalloproteinases). To further evaluate PCLS as an in vitro model, we have tested ALK5 inhibitor SB525334 which was previously shown to attenuate fibrosis in in vivo bleomycin model and nintedanib which is the FDA approved treatment for IPF. SB525334 and nintedanib inhibited expression of fibrosis related genes in PCLS from bleomycin treated mice. In addition, comparable activity profile of SB525334 was achieved in PCLS and in vivo model. Altogether these results suggest that PCLS may be a suitable in vitro model for compound testing during drug development process.


Assuntos
Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/fisiopatologia , Imidazóis/farmacologia , Indóis/farmacologia , Quinoxalinas/farmacologia , Animais , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Antimicrob Agents Chemother ; 60(9): 5337-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353268

RESUMO

As we face an alarming increase in bacterial resistance to current antibacterial chemotherapeutics, expanding the available therapeutic arsenal in the fight against resistant bacterial pathogens causing respiratory tract infections is of high importance. The antibacterial potency of macrolones, a novel class of macrolide antibiotics, against key respiratory pathogens was evaluated in vitro and in vivo MIC values against Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae strains sensitive to macrolide antibiotics and with defined macrolide resistance mechanisms were determined. The propensity of macrolones to induce the expression of inducible erm genes was tested by the triple-disk method and incubation in the presence of subinhibitory concentrations of compounds. In vivo efficacy was assessed in a murine model of S. pneumoniae-induced pneumonia, and pharmacokinetic (PK) profiles in mice were determined. The in vitro antibacterial profiles of macrolones were superior to those of marketed macrolide antibiotics, including the ketolide telithromycin, and the compounds did not induce the expression of inducible erm genes. They acted as typical protein synthesis inhibitors in an Escherichia coli transcription/translation assay. Macrolones were characterized by low to moderate systemic clearance, a large volume of distribution, a long half-life, and low oral bioavailability. They were highly efficacious in a murine model of pneumonia after intraperitoneal application even against an S. pneumoniae strain with constitutive resistance to macrolide-lincosamide-streptogramin B antibiotics. Macrolones are the class of macrolide antibiotics with an outstanding antibacterial profile and reasonable PK parameters resulting in good in vivo efficacy.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Macrolídeos/farmacologia , Pneumonia Pneumocócica/tratamento farmacológico , Inibidores da Síntese de Proteínas/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Escherichia coli/química , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Cetolídeos/farmacologia , Lincosamidas/farmacologia , Macrolídeos/farmacocinética , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/microbiologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacocinética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Estreptogramina B/farmacologia , Relação Estrutura-Atividade
11.
J Med Chem ; 58(14): 5501-21, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26098163

RESUMO

Bacterial DNA gyrase and topoisomerase IV are essential enzymes that control the topological state of DNA during replication and validated antibacterial drug targets. Starting from a library of marine alkaloid oroidin analogues, we identified low micromolar inhibitors of Escherichia coli DNA gyrase based on the 5,6,7,8-tetrahydroquinazoline and 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole scaffolds. Structure-based optimization of the initial hits resulted in low nanomolar E. coli DNA gyrase inhibitors, some of which exhibited micromolar inhibition of E. coli topoisomerase IV and of Staphylococcus aureus homologues. Some of the compounds possessed modest antibacterial activity against Gram positive bacterial strains, while their evaluation against wild-type, impA and ΔtolC E. coli strains suggests that they are efflux pump substrates and/or do not possess the physicochemical properties necessary for cell wall penetration. Our study provides a rationale for optimization of this class of compounds toward balanced dual DNA gyrase and topoisomerase IV inhibitors with antibacterial activity.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Girase/metabolismo , Desenho de Fármacos , Tiazóis/química , Tiazóis/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , DNA Girase/química , DNA Topoisomerase IV/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Concentração Inibidora 50 , Modelos Moleculares , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 21(1): 321-32, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23199485

RESUMO

A new concept in design of safe glucocorticoid therapy was introduced by conjugating potent glucocorticoid steroids with macrolides (macrolactonolides). These compounds were synthesized from various steroid 17ß-carboxylic acids and 9a-N-(3-aminoalkyl) derivatives of 9-deokso-9a-aza-9a-homoeritromicin A and 3-descladinosyl-9-deokso-9a-aza-9a-homoeritromicin A using stable alkyl chain. Combining property of macrolides to preferentially accumulate in immune cells, especially in phagocyte cells, with anti-inflammatory activity of classic steroids, we designed molecules which showed good anti-inflammatory activity in ovalbumin (OVA) induced asthma in rats. The synthesis, in vitro and in vivo anti-inflammatory activity of this novel class of compounds are described.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Macrolídeos/química , Macrolídeos/uso terapêutico , Esteroides/química , Esteroides/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Asma/induzido quimicamente , Ácidos Carboxílicos , Linhagem Celular , Desenho de Fármacos , Glucocorticoides/química , Glucocorticoides/farmacocinética , Glucocorticoides/uso terapêutico , Macrolídeos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Endogâmicos BN , Esteroides/farmacocinética
13.
Cell Immunol ; 279(1): 78-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23099154

RESUMO

Azithromycin and chloroquine have been shown to exhibit anti-inflammatory activities in a number of cellular systems, but the mechanisms of these activities have still not been clarified unequivocally. Since both drugs are cationic, accumulate in acidic cellular compartments and bind to phospholipids with a consequent increase in lysosomal pH and induce phospholipidosis, we examined the relevance of these common properties to their anti-inflammatory activities. We compared also these effects with effects of concanamycin A, compound which inhibits acidification of lysosomes. All three compounds increased lysosomal pH, accumulation of autophagic vacuoles and ubiquitinated proteins and impaired recycling of TLR4 receptor with consequences in downstream signaling in LPS-stimulated J774A.1 cells. Azithromycin and chloroquine additionally inhibited arachidonic acid release and prostaglandin E2 synthesis. Therefore, impairment of lysosomal functions by azithromycin and chloroquine deregulate TLR4 recycling and signaling and phospholipases activation and lead to anti-inflammatory phenotype in LPS-stimulated J774A.1 cells.


Assuntos
Anti-Inflamatórios/farmacologia , Azitromicina/farmacologia , Cloroquina/farmacologia , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Ácido Araquidônico/metabolismo , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Lisossomos/química , Lisossomos/metabolismo , Macrolídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Pharmacol Res ; 66(4): 357-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22766077

RESUMO

Azithromycin is a macrolide antibiotic with well-described anti-inflammatory properties which can be attributed, at least partially, to its action on macrophages. We have previously shown, with 18 different macrolide molecules, that IL-6 and PGE2 inhibition correlates with macrolide accumulation, as well as with their binding to phospholipids in J774A.1 cells. The present study was performed in order to substantiate the hypothesis that biological membranes are a target for macrolide anti-inflammatory activity. By analyzing the effect of azithromycin on overall eicosanoid production, we found that in LPS-stimulated J774A.1 cells, azithromycin, like indomethacin, inhibited the synthesis of all eicosanoids produced downstream of COX. Upstream of COX, azithromycin inhibited arachidonic acid release in the same way as a cPLA2 inhibitor, while indomethacin had no effect. Further comparison revealed that in LPS-stimulated J774A.1 cells, the cPLA2 inhibitor showed the same profile of inhibition as azithromycin in inhibiting PGE2, IL-6, IL-12p40 and arachidonic acid release. Therefore, we propose that the anti-inflammatory activity of azithromycin in this model may be due to interactions with cPLA2, causing inadequate translocation of the enzyme or disturbing physical interactions with its substrates.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Azitromicina/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Animais , Antibacterianos/imunologia , Anti-Inflamatórios/imunologia , Anti-Inflamatórios não Esteroides/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Ácido Araquidônico/imunologia , Azitromicina/imunologia , Linhagem Celular , Dinoprostona/imunologia , Eicosanoides/imunologia , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Indometacina/imunologia , Indometacina/farmacologia , Subunidade p40 da Interleucina-12/imunologia , Interleucina-6/imunologia , Macrófagos/metabolismo , Camundongos , Prostaglandina-Endoperóxido Sintases/genética , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/imunologia
15.
J Leukoc Biol ; 91(2): 229-43, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22131344

RESUMO

Azithromycin, a macrolide antibacterial, has been shown to modify the phenotype of macrophages. We have investigated whether azithromycin in vitro is able to modulate the differentiation of human blood monocytes to DCs. iA-DCs appear to have a unique phenotype, characterized by increased granularity, adherence, and a surface molecule expression profile similar to that of MDCs, namely, CD1a⁻CD14⁻CD71⁺CD209(high), as well as high CD86 and HLA-DR expression. The iA-DC phenotype is associated with increased IL-6 and IL-10 release, increased CCL2 and CCL18 expression and release, and M-CSF expression, as well as reduced CCL17 expression and release. Upon maturation with LPS, A-DCs and MDCs exhibit decreased expression of HLA-DR and costimulatory molecules, CD40 and CD83, as well as an increase in IL-10 and a decrease in CCL17 and CXCL11 secretion. These modulated responses of iA-DCs were associated with the ability to reduce a MLR, together with enhanced phagocytic and efferocytotic properties. Azithromycin, added 2 h before activation of iDCs with LPS, enhanced IL-10 release and inhibited IL-6, IL-12p40, CXCL10, CXCL11, and CCL22 release. In conclusion, azithromycin modulates the differentiation of blood monocyte-derived DCs to form iA-DCs with a distinct phenotype similar to that of iMDCs, accompanied by enhanced phagocytic and efferocytic capabilities. It also modifies LPS-induced DC maturation by decreasing surface molecule expression required for T cell activation, increasing IL-10 production, and inducing MLR-reducing properties.


Assuntos
Azitromicina/farmacologia , Células Dendríticas/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-4/farmacologia , Monócitos/efeitos dos fármacos , Apoptose , Autofagia , Diferenciação Celular/efeitos dos fármacos , Separação Celular/métodos , Células Cultivadas/efeitos dos fármacos , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Células Jurkat , Teste de Cultura Mista de Linfócitos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Monócitos/citologia , Fagocitose , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/imunologia
16.
Pharmacol Res ; 64(3): 298-307, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21473915

RESUMO

Some macrolide antibiotics were reported to inhibit interleukin-6 (IL6) and prostaglandin-E2 (PGE(2)) production by bacterial lipopolysaccharide (LPS) stimulated J774A.1 cells. Macrolides are also known to accumulate in cells and some were proven inducers of phospholipidosis. In the present study, with a set of 18 mainly 14- and 15-membered macrolides, we have investigated whether these macrolide induced phenomena in J774A.1 cells are connected. In LPS-stimulated J774A.1 cells, the extent of inhibition of proinflammatory markers (IL6 and PGE(2)) by macrolides significantly correlated with their extent of accumulation in cells, as well as with the induction of phospholipidosis, and cytotoxic effects in prolonged culture (with correlation coefficients (R) ranging from 0.78 to 0.93). The effects observed were related to macrolide binding to phospholipids (CHI IAM), number of positively charged centres, and were inversely proportional to the number of hydrogen bond donors. Similar interdependence of effects was obtained with chloroquine and amiodarone, whereas for dexamethasone and indomethacin these effects were not linked. The observed macrolide induced phenomena in J774A.1 cells were reversible and elimination of the macrolides from the culture media prevented phospholipidosis and the development of cytotoxicity in long-term cultures. Based on comparison with known clinical data, we conclude that LPS-stimulated J774A.1 cells in presented experimental setup are not a representative cellular model for the evaluation of macrolide anti-inflammatory potential in clinical trials. Nevertheless, our study shows that, at least in in vitro models, binding to biological membranes may be the crucial factor of macrolide mechanism of action.


Assuntos
Antibacterianos/imunologia , Anti-Inflamatórios/imunologia , Macrolídeos/imunologia , Fosfolipídeos/metabolismo , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Sítios de Ligação , Linhagem Celular , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , Macrolídeos/farmacocinética , Macrolídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...