Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Hazard Mater ; 471: 134406, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688218

RESUMO

Sea disposal of mine tailings in fjord ecosystems is an important coastal management issue in Norway and occurs at the land-sea interface. Here we studied accumulation of heavy metals in brown crab (Cancer pagurus) and seafloor sediment from Jøssingfjord, Norway during 2018 to evaluate long-term, legacy pollution effects of coastal mine tailing sea disposal activities. Nickel and copper sediment pollution in the mine tailing sea disposal area was classified as moderate and severe, respectively, under Norwegian environmental quality standards, and highlights the persistent hazard and legacy impacts of heavy metals in these impacted fjord ecosystems. Mercury, zinc, and arsenic had stronger affinities to brown crab muscle likely due to the presence of thiols, and availability of metal binding sites. Our multi-isotopic composition data showed that lead isotopes were the most useful source apportionment tool for this fjord. Overall, our study highlights the importance and value of measuring several different heavy metals and multiple isotopic signatures in different crab organs and seafloor sediment to comprehensively evaluate fjord pollution and kinetic uptake dynamics. Brown crabs were suitable eco-indicators of benthic ecosystem heavy metal pollution in a fjord ecosystem still experiencing short- and long-term physical and chemical impacts from coastal mining sea disposal activities.


Assuntos
Braquiúros , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Mineração , Poluentes Químicos da Água , Animais , Braquiúros/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Noruega , Ecossistema , Estuários
2.
Environ Res ; 252(Pt 4): 119021, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685293

RESUMO

Demand for n-3 polyunsaturated fatty acids (n-3 PUFAs) exceeds supply. Large-scale studies on effects of season and geography of n-3 PUFAs in marine fish from the Northeast Atlantic Ocean (NEAO) may be used to optimize utilization and improve nutrition security. Using a sinusoid model, seasonal cycles of n-3 PUFAs were determined and found to be species-specific and clearly pronounced for the pelagic zooplankton feeding species. The Greenland halibut showed very little seasonal variation. The n-3 PUFA content in North Sea autumn-spawning (NSAS) herring peaked in summer, while Norwegian spring-spawning (NSS) herring and mackerel had their peak in autumn. A time shift of peaks in n-3 PUFAs between the two herring stocks was detected, likely due to different spawning strategies in addition to a delay of n-3 PUFAs flux in the northern regions of the NEAO. This study demonstrates that consideration of nutrient contents, such as n-3 PUFAs, when organizing and structuring fishery approaches may improve overall nutritional yield. Based on total annual Norwegian fish landings and seasonal variation in n-3 PUFA contents, n-3 PUFAs yield could theoretically be increased from 13.79 kilo ton per year from the current fishing tactics, to 15.54 if the pelagic species were only caught during the time of their seasonal n-3 PUFA peaks. Pelagic fish is a good source for dietary n-3 PUFAs, but harvest timing will also influence n-3 PUFAs intake by human consumers. One portion of fatty fish harvested during winter/spring may not meet the weekly intake reference nutritional guidelines for n-3 PUFAs. Marine n-3 PUFAs yields also varied geographically and decreased southwards, with the lowest values in Skagerrak. This study can serve as a model to understand patterns of reproductive cycles and geographical distribution of n-3 PUFAs in fatty fish from the NEAO and the novel approach may be useful to support sustainable, seasonal fishing programmes for optimization of n-3 PUFAs yields.

3.
Environ Sci Technol ; 58(9): 4060-4069, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331396

RESUMO

Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Estudos Prospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade
4.
Environ Pollut ; 338: 122706, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821039

RESUMO

The Northeast Arctic cod (Gadus morhua) is the world's northernmost stock of Atlantic cod and is of considerable ecological and economic importance. Northeast Arctic cod are widely distributed in the Barents Sea, an environment that supports a high degree of ecosystem resiliency and food web complexity. Here using 121 years of ocean temperature data (1900-2020), 41 years of sea ice extent information (1979-2020) and 27 years of total mercury (Hg) fillet concentration data (1994-2021, n = 1999, ≥71% Methyl Hg, n = 20) from the Barents Sea ecosystem, we evaluate the effects of climate change dynamics on Hg temporal trends in Northeast Arctic cod. We observed low and consistently stable, Hg concentrations (yearly, least-square means range = 0.022-0.037 mg/kg wet wt.) in length-normalized fish, with a slight decline in the most recent sampling periods despite a significant increase in Barents Sea temperature, and a sharp decline in regional sea ice extent. Overall, our data suggest that recent Arctic amplification of ocean temperature, "Atlantification," and other perturbations of the Barents Sea ecosystem, along with rapidly declining sea ice extent over the last ∼30 years did not translate into major increases or decreases in Hg bioaccumulation in Northeast Arctic cod. Our findings are consistent with similar long-term, temporal assessments of Atlantic cod inhabiting Oslofjord, Norway, and with recent investigations and empirical data for other marine apex predators. This demonstrates that Hg bioaccumulation is highly context specific, and some species may not be as sensitive to current climate change-contaminant interactions as currently thought. Fish Hg bioaccumulation-climate change relationships are highly complex and not uniform, and our data suggest that Hg temporal trends in marine apex predators can vary considerably within and among species, and geographically. Hg bioaccumulation regimes in biota are highly nuanced and likely driven by a suite of other factors such as local diets, sources of Hg, bioenergetics, toxicokinetic processing, and growth and metabolic rates of individuals and taxa, and inputs from anthropogenic activities at varying spatiotemporal scales. Collectively, these findings have important policy implications for global food security, the Minamata Convention on Mercury, and several relevant UN Sustainable Development Goals.


Assuntos
Gadus morhua , Mercúrio , Animais , Ecossistema , Mercúrio/metabolismo , Mudança Climática , Cadeia Alimentar , Peixes , Regiões Árticas
5.
Sci Total Environ ; 905: 166100, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37558061

RESUMO

Plastic waste is increasing and is a serious environmental problem. Among the threats associated with plastics is the release of contaminants into the environment. This study aimed to evaluate the efficiency of metals release from plastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polypropylene (PP)) as affected by different soil solution types, artificial root exudates, and distilled water. The extent of metal release varied depending on the type of solution and plastic used. Metals were leached most effectively from plastics in soil solutions, followed by root exudates, and least effectively by distilled water. LDPE released the highest concentrations of Cu and Na into solution, PP released the greatest amount of Fe, and PET released the most Cr. The efficiencies of Mg and Zn release from the plastics (PP and PET) varied by solution type. Among the plastics studied, LDPE exhibited the strongest ability to adsorb metals, such as Fe, Cr, Mg, and Zn from soil solutions. The amount of metal released from the plastics was also dependent on pH, dissolved organic carbon (DOC) concentrations, and the electrical conductivity (EC) of the solutions. Moreover, plastic extracts were found to have negative effects on germination and growth in Lepidium sativum.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Polietileno , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Polipropilenos/toxicidade , Água , Plásticos/toxicidade
6.
J Hazard Mater ; 457: 131758, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37320901

RESUMO

Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Poluentes Químicos da Água , Humanos , Animais , Poluentes Orgânicos Persistentes , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Bifenilos Policlorados/análise , Poluentes Ambientais/análise , Peixes , Éteres Difenil Halogenados/análise , Oceano Atlântico , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 57(17): 7009-7017, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37010423

RESUMO

Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Microplásticos , Polietileno/análise , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos/análise
9.
Environ Int ; 174: 107914, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37028266

RESUMO

The impacts of macroplastics (macro-), microplastics (MPs, <5mm), and nanoplastics (NPs, <100 nm) on corals and their complex reef ecosystems are receiving increased attention and visibility. MPs represent a major, contemporary, sustainability challenge with known and unknown effects on the ocean, and coral reef ecosystems worldwide. However, the fate and transport processes of macro-, MPs, and NPs and their direct and indirect impacts on coral reef ecosystems remains poorly understood. In this study, we verify and briefly summarize MPs distribution and pollution patterns in coral reefs from various geographical regions and discuss potential risks. The main interaction mechanisms show that MPs may substantially affect coral feeding performance, proper skeletal formation, and overall nutrition and, thus, there is an urgent need to address this rapidly growing environmental problem. From a management perspective, macro-, MPs, and NPs should, ideally, all be included in environmental monitoring frameworks, as possible, to aid in identifying those geographical areas that are most heavily impacted and to support future prioritization of conservation efforts. The potential solutions to the macro-, MP, and NP pollution problem include raising public awareness of plastic pollution, developing robust, environmental, conservation efforts, promoting a circular economy, and propelling industry-supported technological innovations to reduce plastic use and consumption. Global actions to curb plastic inputs, and releases of macro-, MP, and NP particles, and their associated chemicals, to the environment are desperately needed to secure the overall health of coral reef ecosystems and their inhabitants. Global scale horizon scans, gap analyses, and other future actions are necessary to gain and increase momentum to properly address this massive environmental problem and are in good accordance with several relevant UN sustainable development goals to sustain planetary health.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Microplásticos , Plásticos
11.
Environ Sci Technol ; 57(9): 3733-3745, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821792

RESUMO

Platinum nanoparticles (PtNPs) are increasing in the environment largely due to their wide use and application in automobile and medical industries. The mechanism of uptake behavior of different-sized PtNPs and their association with PtNPs-induced phytotoxicity to plants remains unclear. The present study investigated PtNP uptake mechanisms and phytotoxicity simultaneously to further understand the accumulation and transformation dynamics. The uptake mechanisms were investigated by comparing the uptake and toxicological effects of three different-sized PtNPs (25, 50, and 70 nm) on rice seedlings across an experimental concentration gradient (0.25, 0.5, and 1 mg/L) during germination. The quantitative and qualitative results indicated that 70 nm-sized PtNPs were more efficiently transferred in rice roots. The increase in the PtNP concentration restricted the particle uptake. Particle aggregation was common in plant cells and tended to dissolve on root surfaces. Notably, the dissolution of small particles was simultaneous with the growth of larger particles after PtNPs entered the rice tissues. Ionomic results revealed that PtNP accumulation induced element homeostasis in the shoot ionome. We observed a significant positive correlation between the PtNP concentration and Fe and B accumulation in rice shoots. Compared to particle size, the exposure concentration of PtNPs had a stronger effect on the shoot ionomic response. Our study provides better understanding of the correlation of ionomic change and NP quantitative accumulation induced by PtNPs in rice seedlings.


Assuntos
Nanopartículas Metálicas , Oryza , Plântula , Platina/farmacologia , Nanopartículas Metálicas/toxicidade , Raízes de Plantas
12.
Nat Rev Earth Environ ; 3: 736-737, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36573142

RESUMO

Environmental cycling of microplastics and nanoplastics is complex; fully understanding these pollutants is hindered by inconsistent methodologies and experimentation within a narrow scope. Consistent methods are needed to advance plastic research and policy within the context of global environmental change.

14.
Water Res ; 218: 118468, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35461104

RESUMO

It is generally believed that the ability of nanoplastics (NPs) to mobilize other contaminants is due to direct adsorption; however, this intuitive belief is questioned in this study when it comes to a historically contaminated soil where mining activities since 1958 have resulted in arsenic (As) and cadmium (Cd) enrichment. Negatively charged polystyrene (PS) NPs were used in this study, which should theoretically stimulate Cd (metal cation) instead of As (negatively charged oxyanion) leaching if direct adsorption accounted for co-transport. Surprisingly, PS NPs enhanced the leaching of As by up to over 5 times (p value < 0.05), but had almost no effect on Cd leaching (p value > 0.05). A novel indirect displacement model was therefore developed to describe the phenomenon of enhanced As leaching. It has been found that negatively charged NPs interacted with As via competition for soil binding sites. Underlying mechanistic insights were further explored via both theoretical calculations with the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach, and direct characterization using Scanning Electron Microscopy (SEM) and Computed X-ray Microtomography (µCT) showing binding sites and flow channels, respectively. The overall results provide new and valuable insights into NP-metal(loid) interactions in the natural soil environment, which can be integrated in future studies regarding the transport and risk assessment of NPs, and toxic metal(loid)s.


Assuntos
Arsênio , Metaloides , Poluentes do Solo , Arsênio/química , Cádmio/química , Metais , Microplásticos , Poliestirenos/química , Solo/química , Poluentes do Solo/análise
16.
Environ Res ; 209: 112734, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35065936

RESUMO

Microplastics are emerging contaminants and there has been growing concern regarding their impacts on aquatic and terrestrial environments. This review provides a comprehensive overview of the current knowledge regarding the sources, occurrences, fates, and risks associated with microplastic contamination in terrestrial environments. This contamination occurs via multiple sources, including primary microplastics (including synthetic materials) and secondary microplastics (derived from the breakdown of larger plastic particles). Microplastic contamination can have both beneficial and detrimental effects on soil properties. Additionally, microplastics have been shown to interact with a wide array of contaminants, including pesticides, persistent organic pollutants, heavy metals, and antibiotics, and may act as a vector for contaminant transfer in terrestrial environments. Microplastics and their associated chemicals can be transferred through food webs and may accumulate across multiple trophic levels, resulting in potential detrimental health effects for humans and other organisms. Although several studies have focused on the occurrence and impacts of microplastic contamination in marine environments, their sources, fate, transport, and effects in terrestrial environments are less studied and not well understood. Therefore, further research focusing on the fate, transport, and impacts of microplastics in relation to soil properties, polymer composition and forms, and land-use types is needed. The development of standardized and harmonized methods for analyzing microplastics in soil-plant ecosystems is essential. Future work should also consider the many interactions of microplastics with soil quality and ecotoxicological impacts on biota in the context of global environmental change.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
19.
Environ Int ; 157: 106858, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530291

RESUMO

Marine fish from the North East Atlantic Ocean (NEAO) are nutrient rich and considered a valuable economic resource. However, marine fish are also a major dietary source of several contaminants, including persistent organic pollutants (POPs) and heavy metals. Using one of the world's largest seafood datasets (n > 25,000 individuals), comprising 12 commercially important fish species collected during 2006-2019 in the NEAO, we assessed the co-occurrence of elements and POPs, and evaluated potential risks to human consumers. Several positive correlations between concentrations of mercury (Hg), dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were observed. Concentrations of Hg, dioxins, PCBs and PBDEs increased from North to South and associations between marine sediment contamination, sea temperature, and fish Hg and POPs concentrations were identified using multi-linear regression (MLR) models. In general, Hg concentrations in fillet and liver of fish were positively associated with increases in both sediment contamination and sea temperature. POPs concentrations in both fillet and liver were positively associated with increases in sediment contamination, and only POPs concentrations in the liver of benthopelagic and demersal species were found to be positively correlated with sea temperature. Using a probabilistic approach to estimate human contaminant exposure from seafood, we showed that intake of pelagic species posed the highest risk of dioxins and dioxin-like PCBs (DL-PCBs) exposure, while intake of benthopelagic and demersal species posed the highest risk of Hg exposure. This study can serve as a model to further understand the distribution, co-occurrence, and trends of contaminants in seafood harvested from the NEAO and their potential risks to human consumers.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Oceano Atlântico , Peixes , Éteres Difenil Halogenados/análise , Humanos , Bifenilos Policlorados/análise , Medição de Risco , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 289: 117843, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340180

RESUMO

Mercury (Hg) pollution in the ocean is an issue of global concern, however bioaccumulation regimes of this ubiquitous pollutant in marine apex predators have important knowledge gaps. Our fish length and stable isotope (δ15N and δ13C) normalized data of Greenland halibut (GH) (Reinhardtius hippoglossoides) showed that Hg bioaccumulation in fillet tissue decreased by ~35-50 %, over a ten-year period from 2006 to 2015 (n = 7 individual sampling years). Hg was predominantly in the methylmercury form (>77 %). Results from a Bayesian information theoretic model showed that GH Hg concentrations decreased with time and its associated declines in Hg air emissions, estimated trophic position, and a potentially lower degree of demersal prey use as indicated by temporal trend shifts in nitrogen (δ15N) and carbon (δ13C) stable isotope values. GH trophic shifts accounted for about one third of the observed temporal reduction in Hg. Our study demonstrates the importance of simultaneously considering Hg emissions, food web dynamics and trophic shifts as important drivers of Hg bioaccumulation in a marine, deep water fish species and highlights the effectiveness of Hg regulations on ocean apex predator Hg concentrations and overall seafood safety.


Assuntos
Linguado , Mercúrio , Poluentes Químicos da Água , Animais , Teorema de Bayes , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Groenlândia , Mercúrio/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...