Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Mov Disord ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718138

RESUMO

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
Nat Med ; 29(8): 2030-2040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37580533

RESUMO

Alcohol use disorder (AUD) exacts enormous personal, social and economic costs globally. Return to alcohol use in treatment-seeking patients with AUD is common, engendered by a cycle of repeated abstinence-relapse episodes even with use of currently available pharmacotherapies. Repeated ethanol use induces dopaminergic signaling neuroadaptations in ventral tegmental area (VTA) neurons of the mesolimbic reward pathway, and sustained dysfunction of reward circuitry is associated with return to drinking behavior. We tested this hypothesis by infusing adeno-associated virus serotype 2 vector encoding human glial-derived neurotrophic factor (AAV2-hGDNF), a growth factor that enhances dopaminergic neuron function, into the VTA of four male rhesus monkeys, with another four receiving vehicle, following induction of chronic alcohol drinking. GDNF expression ablated the return to alcohol drinking behavior over a 12-month period of repeated abstinence-alcohol reintroduction challenges. This behavioral change was accompanied by neurophysiological modulations to dopamine signaling in the nucleus accumbens that countered the hypodopaminergic signaling state associated with chronic alcohol use, indicative of a therapeutic modulation of limbic circuits countering the effects of alcohol. These preclinical findings suggest gene therapy targeting relapse prevention may be a potential therapeutic strategy for AUD.


Assuntos
Alcoolismo , Animais , Masculino , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/terapia , Alcoolismo/tratamento farmacológico , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Etanol/uso terapêutico , Terapia Genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Núcleo Accumbens/metabolismo , Primatas/genética , Área Tegmentar Ventral/metabolismo
4.
Neuro Oncol ; 25(6): 1085-1097, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640127

RESUMO

BACKGROUND: MDNA55 is an interleukin 4 receptor (IL4R)-targeting toxin in development for recurrent GBM, a universally fatal disease. IL4R is overexpressed in GBM as well as cells of the tumor microenvironment. High expression of IL4R is associated with poor clinical outcomes. METHODS: MDNA55-05 is an open-label, single-arm phase IIb study of MDNA55 in recurrent GBM (rGBM) patients with an aggressive form of GBM (de novo GBM, IDH wild-type, and nonresectable at recurrence) on their 1st or 2nd recurrence. MDNA55 was administered intratumorally as a single dose treatment (dose range of 18 to 240 ug) using convection-enhanced delivery (CED) with up to 4 stereo-tactically placed catheters. It was co-infused with a contrast agent (Gd-DTPA, Magnevist®) to assess distribution in and around the tumor margins. The flow rate of each catheter did not exceed 10µL/min to ensure that the infusion duration did not exceed 48 h. The primary endpoint was mOS, with secondary endpoints determining the effects of IL4R status on mOS and PFS. RESULTS: MDNA55 showed an acceptable safety profile at doses up to 240 µg. In all evaluable patients (n = 44) mOS was 11.64 months (80% one-sided CI 8.62, 15.02) and OS-12 was 46%. A subgroup (n = 32) consisting of IL4R High and IL4R Low patients treated with high-dose MDNA55 (>180 ug) showed the best benefit with mOS of 15 months, OS-12 of 55%. Based on mRANO criteria, tumor control was observed in 81% (26/32), including those patients who exhibited pseudo-progression (15/26). CONCLUSIONS: MDNA55 demonstrated tumor control and promising survival and may benefit rGBM patients when treated at high-dose irrespective of IL4R expression level.Trial Registration: Clinicaltrials.gov NCT02858895.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Receptores de Interleucina-4/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
7.
Mol Ther ; 30(12): 3632-3638, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957524

RESUMO

Direct putaminal infusion of adeno-associated virus vector (serotype 2) (AAV2) containing the human glial cell line-derived neurotrophic factor (GDNF) transgene was studied in a phase I clinical trial of participants with advanced Parkinson's disease (PD). Convection-enhanced delivery of AAV2-GDNF with a surrogate imaging tracer (gadoteridol) was used to track infusate distribution during real-time intraoperative magnetic resonance imaging (iMRI). Pre-, intra-, and serial postoperative (up to 5 years after infusion) MRI were analyzed in 13 participants with PD treated with bilateral putaminal co-infusions (52 infusions in total) of AAV2-GDNF and gadoteridol (infusion volume, 450 mL per putamen). Real-time iMRI confirmed infusion cannula placement, anatomic quantification of volumetric perfusion within the putamen, and direct visualization of off-target leakage or cannula reflux (which permitted corresponding infusion rate/cannula adjustments). Serial post-treatment MRI assessment (n = 13) demonstrated no evidence of cerebral parenchyma toxicity in the corresponding regions of AAV2-GDNF and gadoteridol co-infusion or surrounding regions over long-term follow-up. Direct confirmation of key intraoperative safety and efficacy parameters underscores the safety and tissue targeting value of real-time imaging with co-infused gadoteridol and putative therapeutic agents (i.e., AAV2-GDNF). This delivery-imaging platform enhances safety, permits delivery personalization, improves therapeutic distribution, and facilitates assessment of efficacy and dosing effect.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/terapia , Imageamento por Ressonância Magnética
8.
Neurology ; 98(1): e40-e50, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34649873

RESUMO

BACKGROUND AND OBJECTIVES: To report final, 36-month safety and clinical outcomes from the PD-1101 trial of NBIb-1817 (VY-AADC01) in participants with moderately advanced Parkinson disease (PD) and motor fluctuations. METHODS: PD-1101 was a phase 1b, open-label, dose escalation trial of VY-AADC01, an experimental AAV2 gene therapy encoding the human aromatic l-amino acid decarboxylase (AADC) enzyme. VY-AADC01 was delivered via bilateral, intraoperative MRI-guided putaminal infusions to 3 cohorts (n = 5 participants per cohort): cohort 1, ≤7.5 × 1011 vector genomes (vg); cohort 2, ≤1.5 × 1012 vg; cohort 3, ≤4.7 × 1012 vg. RESULTS: No serious adverse events (SAEs) attributed to VY-AADC01 were reported. All 4 non-vector-related SAEs (atrial fibrillation and pulmonary embolism in 1 participant and 2 events of small bowel obstruction in another participant) resolved. Requirements for PD medications were reduced by 21%-30% in the 2 highest dose cohorts at 36 months. Standard measures of motor function (PD diary, Unified Parkinson's Disease Rating Scale III "off"-medication and "on"-medication scores), global impressions of improvement (Clinical Global Impression of Improvement, Patient Global Impression of Improvement), and quality of life (39-item Parkinson's Disease Questionnaire) were stable or improved compared with baseline at 12, 24, and 36 months following VY-AADC01 administration across cohorts. DISCUSSIONS: VY-AADC01 and the surgical administration procedure were well-tolerated and resulted in stable or improved motor function and quality of life across cohorts, as well as reduced PD medication requirements in cohorts 2 and 3 over 3 years. TRIAL REGISTRATION INFORMATION: NCT01973543. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that, in patients with moderately advanced PD and motor fluctuations, putaminal infusion of VY-AADC01 is well tolerated and may improve motor function.


Assuntos
Carboxiliases , Doença de Parkinson , Aminoácidos/genética , Aminoácidos/uso terapêutico , Antiparkinsonianos/efeitos adversos , Carboxiliases/uso terapêutico , Terapia Genética/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento
9.
J Parkinsons Dis ; 11(s2): S173-S182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366374

RESUMO

At present there is a significant unmet need for clinically available treatments for Parkinson's disease (PD) patients to stably restore balance to dopamine network function, leaving patients with inadequate management of symptoms as the disease progresses. Gene therapy is an attractive approach to impart a durable effect on neuronal function through introduction of genetic material to reestablish dopamine levels and/or functionally recover dopaminergic signaling by improving neuronal health. Ongoing clinical gene therapy trials in PD are focused on enzymatic enhancement of dopamine production and/or the restoration of the nigrostriatal pathway to improve dopaminergic network function. In this review, we discuss data from current gene therapy trials for PD and recent advances in study design and surgical approaches.


Assuntos
Doença de Parkinson , Dopamina , Terapia Genética , Humanos , Neurônios , Doença de Parkinson/terapia
10.
Nat Commun ; 12(1): 4251, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253733

RESUMO

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder characterized by deficient synthesis of dopamine and serotonin. It presents in early infancy, and causes severe developmental disability and lifelong motor, behavioral, and autonomic symptoms including oculogyric crises (OGC), sleep disorder, and mood disturbance. We investigated the safety and efficacy of delivery of a viral vector expressing AADC (AAV2-hAADC) to the midbrain in children with AADC deficiency (ClinicalTrials.gov Identifier NCT02852213). Seven (7) children, aged 4-9 years underwent convection-enhanced delivery (CED) of AAV2-hAADC to the bilateral substantia nigra (SN) and ventral tegmental area (VTA) (total infusion volume: 80 µL per hemisphere) in 2 dose cohorts: 1.3 × 1011 vg (n = 3), and 4.2 × 1011 vg (n = 4). Primary aims were to demonstrate the safety of the procedure and document biomarker evidence of restoration of brain AADC activity. Secondary aims were to assess clinical improvement in symptoms and motor function. Direct bilateral infusion of AAV2-hAADC was safe, well-tolerated and achieved target coverage of 98% and 70% of the SN and VTA, respectively. Dopamine metabolism was increased in all subjects and FDOPA uptake was enhanced within the midbrain and the striatum. OGC resolved completely in 6 of 7 subjects by Month 3 post-surgery. Twelve (12) months after surgery, 6/7 subjects gained normal head control and 4/7 could sit independently. At 18 months, 2 subjects could walk with 2-hand support. Both the primary and secondary endpoints of the study were met. Midbrain gene delivery in children with AADC deficiency is feasible and safe, and leads to clinical improvements in symptoms and motor function.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/deficiência , Dependovirus/genética , Neurônios Dopaminérgicos/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Imageamento por Ressonância Magnética , Mesencéfalo/patologia , Erros Inatos do Metabolismo dos Aminoácidos/líquido cefalorraquidiano , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Descarboxilases de Aminoácido-L-Aromático/líquido cefalorraquidiano , Descarboxilases de Aminoácido-L-Aromático/genética , Criança , Pré-Escolar , Discinesias/fisiopatologia , Feminino , Terapia Genética/efeitos adversos , Humanos , Masculino , Metaboloma , Atividade Motora , Neurotransmissores/líquido cefalorraquidiano , Neurotransmissores/metabolismo , Fatores de Tempo
11.
Front Neurol ; 12: 648532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889127

RESUMO

Introduction: We sought to provide an overview of the published and currently ongoing movement disorders clinical trials employing gene therapy, defined as a technology aiming to modulate the expression of one or more genes to achieve a therapeutic benefit. Methods: We systematically reviewed movement disorders gene therapy clinical trials from PubMed and ClinicalTrials.gov using a searching strategy that included Parkinson disease (PD), Huntington disease (HD), amino acid decarboxylase (AADC) deficiency, multiple system atrophy (MSA), progressive supranuclear palsy (PSP), dystonia, tremor, ataxia, and other movement disorders. Data extracted included study characteristics, investigational product, route of administration, safety/tolerability, motor endpoints, and secondary outcomes (i.e., neuroimaging, biomarkers). Results: We identified a total of 46 studies focusing on PD (21 published and nine ongoing), HD (2 published and 5 ongoing), AADC deficiency (4 published and 2 ongoing), MSA (2 ongoing), and PSP (1 ongoing). In PD, intraparenchymal infusion of viral vector-mediated gene therapies demonstrated to be safe and showed promising preliminary data in trials aiming at restoring the synthesis of dopamine, enhancing the production of neurotrophic factors, or modifying the functional interaction between different nodes of the basal ganglia. In HD, monthly intrathecal delivery of an antisense oligonucleotide (ASO) targeting the huntingtin protein (HTT) mRNA proved to be safe and tolerable, and demonstrated a dose-dependent reduction of the cerebrospinal fluid levels of mutated HTT, while a small phase-I study testing implantable capsules of cells engineered to synthesize ciliary neurotrophic factor failed to show consistent drug delivery. In AADC deficiency, gene replacement studies demonstrated to be relatively safe in restoring catecholamine and serotonin synthesis, with promising outcomes. Ongoing movement disorders clinical trials are focusing on a variety of gene therapy approaches including alternative viral vector serotypes, novel recombinant genes, novel delivery techniques, and ASOs for the treatment of HD, MSA, and distinct subtypes of PD (LRRK2 mutation or GBA1 mutation carriers). Conclusion: Initial phase-I and -II studies tested the safety and feasibility of gene therapy in PD, HD, and AADC deficiency. The ongoing generation of clinical trials aims to test the efficacy of these approaches and explore additional applications for gene therapy in movement disorders.

12.
Clin Cancer Res ; 27(14): 3916-3925, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33863808

RESUMO

PURPOSE: The current study compared the standard response assessment in neuro-oncology (RANO), immunotherapy RANO (iRANO), and modified RANO (mRANO) criteria as well as quantified the association between progression-free (PFS) and overall survival (OS) in an immunotherapy trial in recurrent glioblastoma (rGBM). PATIENTS AND METHODS: A total of 47 patients with rGBM were enrolled in a prospective phase II convection-enhanced delivery of an IL4R-targeted immunotoxin (MDNA55-05, NCT02858895). Bidirectional tumor measurements were created by local sites and centrally by an independent radiologic faculty, then standard RANO, iRANO, and mRANO criteria were applied. RESULTS: A total of 41 of 47 patients (mean age 56 ± 11.7) were evaluable for response. PFS was significantly shorter using standard RANO compared with iRANO (log-rank, P < 0.0001; HR = 0.3) and mRANO (P < 0.0001; HR = 0.3). In patients who died and had confirmed progression on standard RANO, no correlation was observed between PFS and OS (local, P = 0.47; central, P = 0.34). Using iRANO, a weak association was observed between confirmed PFS and OS via local site measurements (P = 0.017), but not central measurements (P = 0.18). A total of 24 of 41 patients (59%) were censored using iRANO and because they lacked confirmation of progression 3 months after initial progression. A strong correlation was observed between mRANO PFS and OS for both local (R2 = 0.66, P < 0.0001) and centrally determined reads (R2 = 0.57, P = 0.0007). CONCLUSIONS: No correlation between radiographic PFS and OS was observed for standard RANO or iRANO, but a correlation was observed between PFS and OS using the mRANO criteria. Also, the iRANO criteria was difficult to implement due to need to confirm progression 3 months after initial progression, censoring more than half the patients.


Assuntos
Glioblastoma/terapia , Imunoterapia/métodos , Imunotoxinas/farmacologia , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Recidiva Local de Neoplasia/terapia , Adulto , Idoso , Intervalo Livre de Doença , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Neoplasias do Sistema Nervoso/tratamento farmacológico , Estudos Prospectivos , Taxa de Sobrevida , Resultado do Tratamento
13.
Nature ; 592(7853): 195-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828315

RESUMO

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Assuntos
Células/metabolismo , Edição de Genes/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organização & administração , Animais , Terapia Genética , Objetivos , Humanos , Estados Unidos
14.
Int J Toxicol ; 40(1): 4-14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33131343

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a potent neuroprotective biologic in Parkinson's disease models. Adeno-associated viral vector serotype 2 (AAV2)-human GDNF safety was assessed in rats treated with a single intracerebral dose of vehicle, 6.8 × 108, 6.8 × 109, or 5.2 × 1010 vector genomes (vg)/dose followed by interim sacrifices on day 7, 31, 90, and 376. There were no treatment-related effects observed on food consumption, body weight, hematology, clinical chemistry, coagulation parameters, neurobehavioral parameters, organ weights, or serum GDNF and anti-GDNF antibody levels. Increased serum anti-AAV2 neutralizing antibody titers were observed in the 5.2 × 1010 vg/dose group. Histopathological lesions were observed at the injection site in the 6.8 × 109 vg/dose (day 7) and 5.2 × 1010 vg/dose groups (days 7 and 31) and consisted of gliosis, mononuclear perivascular cuffing, intranuclear inclusion bodies, and/or apoptosis on day 7 and mononuclear perivascular cuffing on day 31. GDNF immunostaining was observed in the injection site in all dose groups through day 376 indicating no detectable impacts of anti-AAV2 neutralizing antibody. There was no evidence of increased expression of calcitonin gene-related peptide or Swann cell hyperplasia in the cervical and lumbar spinal cord or medulla oblongata at the 5.2 × 1010 vg/dose level indicating lack of hyperplastic effects. In conclusion, no systemic toxicity was observed, and the local toxicity observed at the injection site appeared to be reversible demonstrating a promising safety profile of intracerebral AAV2-GDNF delivery. Furthermore, an intracerebral dose of 6.8 × 108 AAV2-GDNF vg/dose was considered to be a no observed adverse effect level in rats.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/toxicidade , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
15.
J Neurosurg ; : 1-7, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33096525

RESUMO

OBJECTIVE: The objective of this study was to assess the feasibility, accuracy, effectiveness, and safety of an MRI-compatible frameless stereotactic ball-joint guide array (BJGA) as a platform for cannula placement and convection-enhanced delivery (CED). METHODS: The authors analyzed the clinical and imaging data from consecutive patients with aromatic l-amino acid decarboxylase (AADC) deficiency who underwent infusion of adeno-associated virus (AAV) containing the AADC gene (AAV2-AADC). RESULTS: Eleven patients (7 females, 4 males) underwent bilateral MRI-guided BJGA cannula placement and CED of AAV2-AADC (22 brainstem infusions). The mean age at infusion was 10.5 ± 5.2 years (range 4-19 years). MRI allowed for accurate real-time planning, confirmed precise cannula placement after single-pass placement, and permitted on-the-fly adjustment. Overall, the mean bilateral depth to the target was 137.0 ± 5.2 mm (range 124.0-145.5 mm). The mean bilateral depth error was 0.9 ± 0.7 mm (range 0-2.2 mm), and the bilateral radial error was 0.9 ± 0.6 mm (range 0.1-2.3 mm). The bilateral absolute tip error was 1.4 ± 0.8 mm (range 0.4-3.0 mm). Target depth and absolute tip error were not correlated (Pearson product-moment correlation coefficient, r = 0.01). CONCLUSIONS: Use of the BJGA is feasible, accurate, effective, and safe for cannula placement, infusion MRI monitoring, and cannula adjustment during CED. The low-profile universal applicability of the BJGA streamlines and facilitates MRI-guided CED.

16.
J Neurosurg ; 134(6): 1751-1763, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32915526

RESUMO

Molecular biological insights have led to a fundamental understanding of the underlying genomic mechanisms of nervous system disease. These findings have resulted in the identification of therapeutic genes that can be packaged in viral capsids for the treatment of a variety of neurological conditions, including neurodegenerative, metabolic, and enzyme deficiency disorders. Recent data have demonstrated that gene-carrying viral vectors (most often adeno-associated viruses) can be effectively distributed by convection-enhanced delivery (CED) in a safe, reliable, targeted, and homogeneous manner across the blood-brain barrier. Critically, these vectors can be monitored using real-time MRI of a co-infused surrogate tracer to accurately predict vector distribution and transgene expression at the perfused site. The unique properties of CED of adeno-associated virus vectors allow for cell-specific transgene manipulation of the infused anatomical site and/or widespread interconnected sites via antero- and/or retrograde transport. The authors review the convective properties of viral vectors, associated technology, and clinical applications.


Assuntos
Convecção , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Adenoviridae/genética , Animais , Humanos , Doenças do Sistema Nervoso/diagnóstico por imagem , Resultado do Tratamento
17.
J Neurol Neurosurg Psychiatry ; 91(11): 1210-1218, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32732384

RESUMO

Loss of nigrostriatal dopaminergic projection neurons is a key pathology in Parkinson's disease, leading to abnormal function of basal ganglia motor circuits and the accompanying characteristic motor features. A number of intraparenchymally delivered gene therapies designed to modify underlying disease and/or improve clinical symptoms have shown promise in preclinical studies and subsequently were evaluated in clinical trials. Here we review the challenges with surgical delivery of gene therapy vectors that limited therapeutic outcomes in these trials, particularly the lack of real-time monitoring of vector administration. These challenges have recently been addressed during the evolution of novel techniques for vector delivery that include the use of intraoperative MRI. The preclinical development of these techniques are described in relation to recent clinical translation in an adeno-associated virus serotype 2-mediated human aromatic L-amino acid decarboxylase gene therapy development programme. This new paradigm allows visualisation of the accuracy and adequacy of viral vector delivery within target structures, enabling intertrial modifications in surgical approaches, cannula design, vector volumes and dosing. The rapid, data-driven evolution of these procedures is unique and has led to improved vector delivery.


Assuntos
Corpo Estriado , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos/métodos , Doença de Parkinson/terapia , Substância Negra , Animais , Descarboxilases de Aminoácido-L-Aromático/genética , Gânglios da Base , Dependovirus , Medicina Baseada em Evidências , GTP Cicloidrolase/genética , Glutamato Descarboxilase/genética , Humanos , Cuidados Intraoperatórios/métodos , Lentivirus , Neurturina/genética , Parvovirinae , Primatas , Cirurgia Assistida por Computador , Tirosina 3-Mono-Oxigenase/genética
18.
J Parkinsons Dis ; 10(3): 875-891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508331

RESUMO

The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/terapia , Animais , Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Doença de Parkinson/metabolismo
19.
Neurol Neurochir Pol ; 54(3): 220-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557526

RESUMO

INTRODUCTION: Vector-based intracerebral gene therapies are being used to treat specific neurodegenerative conditions such as Parkinson's Disease (PD). This review presents a basis for central nervous system (CNS) gene therapy treatments of neurodegenerative diseases such as PD, as well as the need for novel skill sets and health delivery strategies within the clinical neurosciences (neurology and neurosurgery) to meet future demand for such therapies. STATE OF THE ART: Preclinical vector-based gene therapy approaches have been translated into clinical trials for PD and other neurodegenerative conditions. Unfortunately, such trials, and parallel efforts using other therapeutics, have yet to provide a breakthrough. Image-guided convection enhanced delivery (CED) optimises the parenchymal distribution of gene therapies applied within the CNS, and may ultimately provide such a breakthrough. CLINICAL IMPLICATIONS: Currently, image-guided CED and gene therapy are not part of training programmes for most neurosurgeons and neurologists. As a result, few medical centres and hospitals have sufficiently experienced teams to participate in gene transfer clinical trials for PD or other neurological conditions. If CNS gene therapies prove to be efficacious for PD and/or other conditions, the demand for such treatments will overwhelm the available number of experienced clinical neuroscience teams and treatment centres. FUTURE DIRECTIONS: Expanded indications and demand for CNS gene therapies will require a worldwide educational effort to supplement the training of clinical neuroscience practitioners. Initially, a limited number of Centres of Excellence will need to establish relevant educational training requirements and best practice for such therapeutic approaches. Advanced technologies, including robotics and artificial intelligence, are especially germane in this regard, and will expand the treatment team's capabilities while assisting in the safe and timely care of those afflicted.


Assuntos
Doença de Parkinson , Inteligência Artificial , Sistema Nervoso Central , Terapia Genética , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia
20.
Mov Disord ; 35(5): 851-858, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32149427

RESUMO

BACKGROUND: As Parkinson's disease progresses, levodopa treatment loses efficacy, partly through the loss of the endogenous dopamine-synthesizing enzyme L-amino acid decarboxylase (AADC). In the phase I PD-1101 study, putaminal administration of VY-AADC01, an investigational adeno-associated virus serotype-2 vector for delivery of the AADC gene in patients with advanced Parkinson's disease, was well tolerated, improved motor function, and reduced antiparkinsonian medication requirements. OBJECTIVES: This substudy aimed to determine whether the timing and magnitude of motor response to intravenous levodopa changed in PD-1101 patients after VY-AADC01 administration. METHODS: Participants received 2-hour threshold (0.6 mg/kg/h) and suprathreshold (1.2 mg/kg/h) levodopa infusions on each of 2 days, both before and approximately 6 months after VY-AADC01. Infusion order was randomized and double blinded. Unified Parkinson's Disease Rating Scale motor scores, finger-tapping speeds, and dyskinesia rating scores were assessed every 30 minutes for 1 hour before and ≥3 hours after start of levodopa infusion. RESULTS: Of 15 PD-1101 patients, 13 participated in the substudy. Unified Parkinson's Disease Rating Scale motor score area under the curve responses to threshold and suprathreshold levodopa infusions increased by 168% and 67%, respectively, after VY-AADC01; finger-tapping speeds improved by 162% and 113%, and dyskinesia scores increased by 208% and 72%, respectively, after VY-AADC01. Adverse events (mild/moderate severity) were reported in 5 participants during levodopa infusions pre-VY-AADC01 and 2 participants post-VY-AADC01 administration. CONCLUSIONS: VY-AADC01 improved motor responses to intravenous levodopa given under controlled conditions. These data and findings from the parent study support further clinical development of AADC gene therapy for people with Parkinson's disease. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Doença de Parkinson , Antiparkinsonianos/uso terapêutico , Terapia Genética , Humanos , Levodopa , Doença de Parkinson/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...