Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672388

RESUMO

For the last two decades, the human infection frequency of Escherichia coli O157 (O157) in Scotland has been 2.5-fold higher than in England and Wales. Results from national cattle surveys conducted in Scotland and England and Wales in 2014/2015 were combined with data on reported human clinical cases from the same time frame to determine if strain differences in national populations of O157 in cattle could be associated with higher human infection rates in Scotland. Shiga toxin subtype (Stx) and phage type (PT) were examined within and between host (cattle vs human) and nation (Scotland vs England and Wales). For a subset of the strains, whole genome sequencing (WGS) provided further insights into geographical and host association. All three major O157 lineages (I, II, I/II) and most sub-lineages (Ia, Ib, Ic, IIa, IIb, IIc) were represented in cattle and humans in both nations. While the relative contribution of different reservoir hosts to human infection is unknown, WGS analysis indicated that the majority of O157 diversity in human cases was captured by isolates from cattle. Despite comparable cattle O157 prevalence between nations, strain types were localized. PT21/28 (sub-lineage Ic, Stx2a+) was significantly more prevalent in Scottish cattle [odds ratio (OR) 8.7 (2.3-33.7; P<0.001] and humans [OR 2.2 (1.5-3.2); P<0.001]. In England and Wales, cattle had a significantly higher association with sub-lineage IIa strains [PT54, Stx2c; OR 5.6 (1.27-33.3); P=0.011] while humans were significantly more closely associated with sub-lineage IIb [PT8, Stx1 and Stx2c; OR 29 (4.9-1161); P<0.001]. Therefore, cattle farms in Scotland were more likely to harbour Stx2a+O157 strains compared to farms in E and W (P<0.001). There was evidence of limited cattle strain migration between nations and clinical isolates from one nation were more similar to cattle isolates from the same nation, with sub-lineage Ic (mainly PT21/28) exhibiting clear national association and evidence of local transmission in Scotland. While we propose the higher rate of O157 clinical cases in Scotland, compared to England and Wales, is a consequence of the nationally higher level of Stx2a+O157 strains in Scottish cattle, we discuss the multiple additional factors that may also contribute to the different infection rates between these nations.


Assuntos
Escherichia coli O157 , Humanos , Bovinos , Animais , Escherichia coli O157/genética , País de Gales/epidemiologia , Escócia/epidemiologia , Inglaterra/epidemiologia , Fazendas
2.
Sci Data ; 10(1): 477, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479849

RESUMO

The European Space Agency launched CryoSat-2 as the first European ice mission in 2010. Its advanced altimeter met primary objectives concerned with sea ice thickness and ice sheets. The value of Cryosat-2 data over global oceans was recognised, and operational products were developed via the CryoSat Ocean Processor (COP). The novel orbit of CryoSat-2 results in a denser coverage of sample points compared to other satellite altimeters. The National Oceanography Centre Sea Level Anomaly (NOCSLA) gridded product is based on interpolating Geophysical Ocean Products (GOP) using weights in space and time. GOP represents the highest quality operational ocean data. NOCSLA is a daily, »° sea level anomaly product covering non-coastal oceans between [60°N 60°S] and January 2011 to October 2020. The paper presents the methodology and scientific applications of NOCSLA. Oceanographic features observed are compared against products from other missions, including Rossby waves and El Niño signals. Results show good agreement with other products, confirming the value of Cryosat-2 data for ocean science and applications.

3.
Wellcome Open Res ; 7: 161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865220

RESUMO

Background: Mobility restrictions prevent the spread of infections to disease-free areas, and early in the coronavirus disease 2019 (COVID-19) pandemic, most countries imposed severe restrictions on mobility as soon as it was clear that containment of local outbreaks was insufficient to control spread. These restrictions have adverse impacts on the economy and other aspects of human health, and it is important to quantify their impact for evaluating their future value. Methods: Here we develop Scotland Coronavirus transmission Model (SCoVMod), a model for COVID-19 in Scotland, which presents unusual challenges because of its diverse geography and population conditions. Our fitted model captures spatio-temporal patterns of mortality in the first phase of the epidemic to a fine geographical scale. Results: We find that lockdown restrictions reduced transmission rates down to an estimated 12\% of its pre-lockdown rate. We show that, while the timing of COVID-19 restrictions influences the role of the transmission rate on the number of COVID-related deaths, early reduction in long distance movements does not. However, poor health associated with deprivation has a considerable association with mortality; the Council Area (CA) with the greatest health-related deprivation was found to have a mortality rate 2.45 times greater than the CA with the lowest health-related deprivation considering all deaths occurring outside of carehomes. Conclusions: We find that in even an early epidemic with poor case ascertainment, a useful spatially explicit model can be fit with meaningful parameters based on the spatio-temporal distribution of death counts. Our simple approach is useful to strategically examine trade-offs between travel related restrictions and physical distancing, and the effect of deprivation-related factors on outcomes.

4.
Sci Rep ; 6: 20649, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857150

RESUMO

Genome-wide experiments to map the DNA-binding locations of transcription-associated factors (TFs) have shown that the number of genes bound by a TF far exceeds the number of possible direct target genes. Distinguishing functional from non-functional binding is therefore a major challenge in the study of transcriptional regulation. We hypothesized that functional targets can be discovered by correlating binding and expression profiles across multiple experimental conditions. To test this hypothesis, we obtained ChIP-seq and RNA-seq data from matching cell types from the human ENCODE resource, considered promoter-proximal and distal cumulative regulatory models to map binding sites to genes, and used a combination of linear and non-linear measures to correlate binding and expression data. We found that a high degree of correlation between a gene's TF-binding and expression profiles was significantly more predictive of the gene being differentially expressed upon knockdown of that TF, compared to using binding sites in the cell type of interest only. Remarkably, TF targets predicted from correlation across a compendium of cell types were also predictive of functional targets in other cell types. Finally, correlation across a time course of ChIP-seq and RNA-seq experiments was also predictive of functional TF targets in that tissue.


Assuntos
Proteínas de Ligação a DNA , DNA , Regulação da Expressão Gênica , Mapeamento de Nucleotídeos/métodos , Elementos de Resposta , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...